
REPORT n I IMIFNTATION PAGE 1 AW "
, OPM N. 0704-0188

Pk#e re K rPow. fptxi ft Ie for rswk krmuOobW ewd*g eng da xm n m mfrdg the "e*

m,.- A D-A 238 264 n. . 0- mml""*R" .%1. AG DATE 3. lIIHI REPOR TYPE AN °"* C.O A ER
I Final: 15 Aug 1990 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SD-Scicon UK Limted, SX Ada MIL-STD-1 750A, Version 1.12, Local Area VAX
Cluster (Host) to MIL-STD-1750A (Target), 901214N1 .11080

6. AUTHOR(S)
National Computing Centre Limited DI
Manchester, UNITED KINGDOM -El E C T!-O

IG ORANIION NAME())ANDARESS(S 8. PERFORMING ORGANIZATION

National Computing Centre Limited REPORT NUMBER

Oxford Road S AVF-VSR-90502172-910412
Manchester MI 7ED
UNITED KINGDOM
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Washington. D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONtAVAILABILITY STATEMENT 12b. DISTRIBUTION COOE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

SD-Scicon UK Limited, XD Ada MIL-STD-1 750A, Version 1.2, Manchester, England, Local Area VAX Cluster (comprising a
VAXserver 3600, 2 MicroVAX 2000's and 1 MicroVAX II)(under VMS 5.3) (Host) to Fairchild F9450 on a SBC-50 board
(MIL-STD-1750A)(bare machine)(Target), ACVCI.11.

91-03869

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI SW. 239-128

AVF Control Number: AVFVSR_9052/72-910412

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #901214N1.11080

SD-Scicon UK Limited
XD Ada MIL-STD-1750A Version 1.2

Local Area VAX Cluster Host and MIL-STD-1750A Target

Prepared by
Testing Services

The National Computing Centre Limited
Oxford Road
Manchester

M1 7ED
England

Ace~slaaForAo..es./a _

3?1 !Aeo.)I(."

Just If teat .. .

Dlstribution/
VSR Version 90-08-15 Avellabillty Cvdeu

Diel Sp .eal

Vahdation Summary Report AVF VSR 9050272

I)-Socon K Limited Page i of iii XD Ada MR.,.STD-750A V1.2

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901214.

Compiler Name and Version: XD Ada MI,-STD-1750A Version 1.2

Host Computer System: Local Area VAX Cluster (comprising a VAXsetver 3600, 2
MicroVAX 2000's and I MicroVAX II) (under VMS 5.3)

Target Computer System: Fairchild F9450 on a SBC-50 board (MIL-STD-1750A) (bare
machine)

A more detailed description of this Ada implementation is found in section 3.1 of this report.
As a result of this validation effort, Validation Certificate #901214N1.11080 is awarded to SD-Scicon
UK Ltd. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

Jane Pink Ada V(idW*JOrganization
Testing Services Manager Director, Computer & Software
The National Computing Centre Limited Engineering Division
Oxford Road Institute for Defense Analyses
.Manchester Alexandria
M 1 7ED VA 22311
England

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington
DC 20301

Validation Summary Report AVFSR_9050'2f2

Si)-ScioDn UK Lmited Page ii of iii XD Ada MM,.S'I-1750A V1.2

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer. SDo-&icon UK Limited

Ada Validation Facility. The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
United Kingdom

ACVC Version: 1.11

Aia Implementation-

Ada Compiler Name: XD Ada MIL-STD1750A

Version:

Host Computer System: Local A-e VAX Cluster (comprising a VAXserver 3600, 2
MicroVAX 2 4Ys and 1 MicroVAX II) (under VMS 5.3)

Target Computer System: Fairchild F9450 on a SBC-.' board (MIL-STD-1750A) (bare
machine)

Customer's Declaration

I, the undersigned, representing SD-Scicon UK Limited, declare that SD-Scicon UK Limited has
no knowledge of deliberate deviations from the Ada Language Standard ANSIMIL-STD4815A in
the implementation(s) listed in this declaration.

Signa Date

Vabdatm Summary Report AVF..VSR.T 9

SD-Scioan UK Limited Page iii of iii XD Ada MU.-3T1750A V1.2

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1 2 REFERENCES ... 1
1.3 ACVC TEST CLASSES 2
1.4 DEFINITION OF TERMS 2

CHAP17ER 2
2.1 WITHDRAWN TESTS .. 1
2.2 INAPPLICABLE TESTS 1
2.3 TEST MODIFICATIONS 3

CHAPTER 3
3.1 TESTING ENVAIRONMENT 1
3.2 SUMMARY OF TEST RESULTS 1
3.3 TEST EXECUTION .. 2

APPENDIX A

APPENDIX B

APPENDIX C

Validation Summay Report AVF VSR....9050

SD-SciCo UK Limited Table of Conteat - Pap i of i XD Ada MIL3D-1750A V12

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ado implementation described above was tested according to the Ada Validation Procedures
[Pro90] against the Ada Standard [Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield
VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria
VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987

Validation Summary Report AVF_.VSR_9050W2

SD-Scicon UK Umited Capter I - Pag I o 4 XD Ada MlrSTD-1750A VI2

INTRODUCTION

[Pro90] Ada Compiler Validation Procedures
Version 2.1, Ada Joint Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide.
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK-FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECKFILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation" correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suit,.- is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(sec scrion 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

1.4 DEFINITION OF TERMS

Validation Summazy Report AVF YSI990502f2

SD-Sckx UK Limited Capter 1 - Page 2 of 4 XD Ads hML-9-1750A V12

INTRODUCTION

Ada Compiler The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

A d a C o m p i l e r The means for testing compliance of Ada implementations, consisting
Validation of the test suite, the support programs, the ACVC user's guide and
Capability (ACVC) the template for the validation summary report.

Ada Implementation An Ada compiler with its host computer system and its target
computer system

Ada Validation Facility The part of the certification body which carries out the procedures
(AVF) required to establish the compliance of an Ada implementation.

Ada Validation The part of the certification body that provides technical guidance for
Organization (AVO) operations of the Ada Certification system.

Compliance of an Ada The ability of the implementation to pass an ACVC version.
Implementation

Computer System A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Conformity Fulfilment by a product, process or service of all requirements
specified.

Customer An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity is
Conformance realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer System A computer system where Ada source programs are transformed into
executable form.

Inapplicable test A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

Vadidation Summary Report AVFVSRk90502172

SD-Sckwn UK limited Chapter 1 -Pag 3 of 4 XD Ada M[LS'ID-1750A V12

INTRODUCTION

Operating System Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/outpu, -ontrol,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

Target Computer A computer system where the executable form of Ada programs are

System executed.

Validated Ada Compiler The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully either
Implementation by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

Withdrawn test A test found to be incorrect and not used in conformity testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the
Ada programming language.

Valdation Summa Report AVF VSR_ '9O5

SD-Scicoa UK Limited Chapta 1 - PaSe 4 of 4 XD Ads hML-ST-175(A VI.2

IMPLEMENTATION DEPENDENCIES

CHAFFER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is
90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026A C83041A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. The inapplicability criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the format AI-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 285 tests have floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests'
C35708F..Y (20 tksts) C35802F..Z (21 tests)
C45241F.. ' (20 teots) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

VaUdatiou Summary Report AVF_VSR900W

SD-SiCoB UK Lmited Chapter 2 - Page I of 4 XD Ada ML-S'ID-1750A V1.2

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type SHORT-INTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55BO7B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORT-INTEGER.

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined type
StHORT FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a name other thai FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

C45423A, C45523A and C45622A check that if MACHINE OVERFLOWS is TRUE and the results
of various floating-point operations lie outside the range of the base type, then the proper exception
is raised; for this implementation, MACHINE-OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types that require a
SYSTEM.MAX MANTISSA of 47 or greater; for this implementation, MAX-MANTISSA is less
than 47.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence package REPORT,
obsolete. For this implementation, the package TEXT1 is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the range of DURATION.
There are no such values for this implementation.

CDI009C uses a representation clause specifying a non-default size for a floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation clauses specifying
non-default sizes for access types.

The following 263 tests check for sequential, text, and direct acccss files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE220IA..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2A01A..C (3) EE241 tD CE2401E..F (2) EE2401G

Validation Summary Rcport AVFVSR_905OO272

Si)-Scicon UK Limited Chapter 2 - Page 2 of 4 XD Ada MTL-STD4750A V1.2

IMPLEMENTATION DEPENDENCIES

CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
('E2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3116A CE3119A • EE3203A
EE3204A CE3207A CE3208A CE3301A
EE3301B CE3302A CE3304A CE3305A
CE3401A CE3402A EE3402B CE3402C..D (2).
CE3403A..C (3) CE3403E..F (2) CE3404B..D (3) CE3405A
EE3405B CE3405C..D (2) CE3406A..D (4) CE3407A..C (3)
CE3408A..C (3) CE3409A CE3409C..E (3) EE3409F
CE3410A CE3410C..E (3) EE341OF CE3411A
CE3411C CE3412A EE3412C CE3413A
CE3413C CE3414A CE3602A..D (4) CE3603A
CE3604A..B (2) CE3605A..E (5) CE3606A..B (2) CE3704A..F (6)
CE3704M..O (3) CE3705A..E (5) CE3706D CE3706F..G (2)
CE3804A..P (16) CE3805A..B (2) CE3806A..B (2) CE3806D..E (2)
CE3806H CE3904A..B (2) CE3905A..C (3) CE3905L
CE3906A..C (3) CE3906E..F (2)

CE3413B checks operations on text files; this implementation does not support external files. (See
,sction 2.3).

CE3806G assumes that implementations not supporting text files wih. raise USE-ERROR if
TEXT IO.CREATE is called; for this implementation NAME-ERROR is raised if a non-null file
name is specified. (See section 2.3).

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 14 tests.

The following test was split because syntax errors at one point resulted in the compiler not detecting
other errors in the test:

B97301E

C45524A..E (5 tests) were graded passed by Test Modification as directed by the AVO. These tests
expect 'that a repeated division will result in zero; but the Ada standard only requires that the result
lie in the smallest safe interval. Thus, the tests were modified to check that the result was within the
smallest safe interval by adding the following code after line 138; the modified tests were passed:

ELSIF VAL < = F'SAFE_SMALL THEN COMMENT ("UNDERFLOW IS GRADUAL");

C64103A and C95084A were graded passed by Evaluation Modification as directed by the AVO.
Because this implementation's actual values for LONG FLOAT'SAFELARGE and

Validation Summary Report AVF VSR_90502/72

SI-Scicon UK Limited Chapter 2 - Page 3 of 4 XD Ada MIL-STD-1750A V1.2

IMPLEMENTATION DEPENDENCIES

SHORT FLOAT'LAST lie within one (SHORT FLOAT) model interval of each other, the tests'
tloating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
need not be raised. The AVO ruled that the implementation's behaviour should be graded passed
because the implementation passed the integer and fixed-point checks. The tollowing
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C95084A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"

C95084A "EXCEPTION NOT RAISED BEFORE CALL - T2 (A)"
"EXCEPTION NOT RAISED AFTER CALL - T5 (B)"

C64201C, C99005A and A98002A were graded passed by Test Modification as directed by the AVO.
These tests respectively contain 12, 12 and 17 tasks; given the implementation's default amount of
storage allocated to a task, this number of tasks causes STORAGE ERROR to be raised. These
tests were modified to include length clauses that specified 1K bytes for the task storage size (for tests
C99005A and A98002A, this required that the single tasks be re-written as task types); the modified
tests were passed.

CE3413B was graded inapplicable by Evaluation Modification as directed by the AVO. This test
includes the expression "COUNT'LAST > 150000", which raises CONSTRAINT-ERROR on the
implicit conversion of the integer literal to type COUNT since COUNT'LAST = 32,767; there is no
handler for this exception, so test execution is terminated. The AVO ruled that this behaviour was
acceptable; the AVO ruled that the test be graded inapplicable because it checks certain file
operations and this implementation does not support external files.

CE3806G was graded inapplicable by Evaluation Modification as directed by the AVO. This test is
inapplicable to implementations that do not support external files. However, the test incorrectly
continues execution after handling NAMEERROR at line 42 (and calling
REPORT.NOT APPLICABLE), and the subsequent attempt to create a file results in the test
aborting with an unhandled NAMEERROR exception.

CE3901A was graded passed by Test Modification as directed by the AVO. This test expects that
implementations that do not support external files will raise USEERROR on the attempt to create
a file at line 52; this implementation raises NAME ERROR, as allowed by AI-00332. The test was
modified by inserting 'I NAME-ERROR' into the exception choice at line 52, and the modified test
was passed.

Valdatio Summary Rcpo AVFYVSR 90502f

SD-Scion UK Limited Captr 2 - Pale 4 of 4 XD Ada M LSID-1750A VL2

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The host and target computers systems were connected via a standard RS232 link. Other details
concerning the Ada implementation tested in this validation effort is described adequately by the
information given in the initial pages of this report.

For a point of contact for technical informatic, about this Ada implementation system, see:

Tim Magness
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley
Surrey
GU15 3XD

For a point of contact for sales information about this Ada implementation system, see:

Colin Foster
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley
Surrey
GU15 3XD

Testing of this Ada implementation was conducted at the customer's site by a validation team from
the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test .s applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3486

Validation Summary Rcport AVF VSR_90502/72

SD-Scico UK Limited Chapter 3 - Page 1 of 2 XD Ada MIL-SD3-1750A VI2

PROCESSING INFORMATION

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 603
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
0 Total Number of Inapplicable Tests 603 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When thLs compiler was tested, the tests listed in section 2.1 had been withdrawn because of test
errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors. The AVF determined that 603 tests were
inapplicable to this implementation. All inapplicable tests were processed during validation testing.
In addition, tlv modified' tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing. The contents of the magnetic tape were loaded onto a VAX 8600 and
were transferred via DECnet to the host computer system.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as appropriate. The executable
images were transferred to the target computer system by the communications link described above,
and run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The or, ions invoked explicitly for validation
testing during this test were:

/LIST used for tests requiring compilation listings

/DEV=DAY0 in-house compiler option to remove extraneous listing information eg dates
and headers.

Test output, compiler and linker listings, and job logs were captured on magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summary Report AVFVSR_9050=2

SD-Scicoo UK Umited Chapt" 3 - Page 2 o 2 XD Ads MIL-SD1750A V12

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in fUG89]. The parameter values are presented in two
ta-bles. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for $MAX -IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V' represents the maximum input-line length.

Macro Parameter Macro Wiue

$MAXIN-LEN 255

$BIGIlD1 (1..V-1 => 'A, V => '1')

$BIG-ID2 (1..V-1 = > 'A', V = > '2')

$BIG-ID3 (1..V/2 => 'A) & '3' & (1..V-1-V/2 => WA)

$BIG-ID4 (I..V/2 = > 'A) & '4 & (1..V-1-Vt2 = > 'A)

$BIG TNT LIT (1..V-3 => '0') & "298"1

$BIG REAL LIT (1..V-5 = > '0) & "690.0"

$BIG-STRING1 " & (1..V/2 => WA) &I"

$BIGSTRING2 ""& (1..V-1-V12 => 'A) &'1' &

$BLANKS (L.V-20 => '')

SMAX LENTNTBASED LITERAL "2:" & (1..V-5 => '0) & '11:"

$MAX LEN REAL BASED LITERAL "16:" & (1..V-7 => '0') & "F.E:"t

$MAX STRING LITERAL ""& (1..V-2 = > 'A) & "

Validation Summy Repor AVI _SR9OMMf7

SD-Scimn UK limited Appendix A - Page I of4 XD MA hMAID-17SOA V1.2

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter Macro Value

$ACC-SIZE 16

$ALIGNMENT 1

SCOUNT-LAST 32767

$DEFAULT-MEM-SIZE 131072

$DEFAULT STOR UNIT 16

$DEFAULT SYS NAME MIL-STD-1750A

$DELTA-DOC 2.0**(-31)

$ENTRY-ADDRESS SYSTEM.TO-ADDRESS (32765)

$ENTRY-ADDRESS1 SYSTEM.TO-ADDRESS(32760)

$ENTRY-ADDRESS2 SYSTEM.TO-ADDRESS(32755)

$FIELD-LAST 255

$FILE-TERMINATOR

$FIXED-NAME NOQSUCH-TYPE

$FLOAT-NAME NOQSUCH TYPE

$FORM-STRING Pitt

$FORM-STRING2 '1CANNOTRESTRICT-FILE-CAPACIT'Y"

$GREATERTHANDURATION 75000.0

$GREATER THAN DURATION BASE LAST
131073.0

$0 REATER THAN FLOAT BASE LAST 3.40283E+38

$GREATER THAN FLOAT 'SAFE LARGE 1.8E+38

Validaion Summary Report AVrPySR..905W~7

SD-Scion UK Limited Appenif A - Pap 2 of 4 XD Ads WMD-1750A V1.2

MACRO PAR.AM1ETERS

$GREATERJTHAN-SHORT-FLOAT-SAFELARGE
"NQ-SUCHJTYPE"

$HIGH-PRIORITY 15

SILLEGAL EXTERNAL FILE NAME1 ILLEGAL EXTERNAL-FILE-NAME1

SILLEGAL-EXTERNAL FILE NAME2 ILLEGAL EXTERNALyFILE-NAME2

SINAPPROPRIATE LINE-LENGTH -1

SINAPPROPRIATE PAGE LENGTH -1

SINCLUDE-PRAGMA1 PRAGMA INCLUDE ("A28006D1.TSr)

$INCLUDE-PRAGMA2 PRAGMA INCLUDE ("B28006D1.TsT")

$INTEGER-FIRST -32768

$INTEGER-LAST 32767

$INTEGER LAST PLUS 1 32768

$ INTERFACE-LANGUAGE ASSEMBLER

$LESS THAN DURATION -75000.0

SLESS THAN-DURATION BASE-FIRST -131073.0

$LINE-TERMINATORt9

$LOW PRIORITY 0

SMACHINE-CODE STATEMENT OPERANDLESS-INST'(OPCOPE=>NOP);

$MACHINECODE-TYPE OPERANDLESS INST

$MANTISSA-DOG 31

$MAX-DIGITS 9

$MAX-INT 2147483647

$MAXINT-PLUS-1 2147483648

$MIN-INT -2147483648

Validation Summary Repout AVF VS9V5O2/7

SD-Scia UK limited Appeudix A - Page 3 of 4 XD Mda MIL4'SID-1750A V12

MACRO PARAMETERS

$NAME NO SUCH-TYPE AVAILABLE

$NAME-LIST MIL-STD-1750A

$NAME-SPECIFICATION1 NO SUCH-NAME

$NAME-SPECIFICATION2 NO SUCH NAME

$NAME-SPECIFICATION3 NO SUCH-NAME

$NEG BASED TNT 16#1FFFFFFE#

$NEW-MEM-SIZE 131072

$NEW STOR UNIT 16

$NEW SYS NAME MIL-STD-1750A

$PAGE-TERMINATOR f

$RECORD-DEFINITION RECORD OPCODE:OPERANDLESS OF; END
RECORD;

$RECORD-NAME OPERANDLESSJINST

$TASK-SIZE 16

$TASK STO RAGE SIZE 4096

$TICK 0.0001

$VARIABLE-ADDRESS SYSTEM.TO ADDRESS (30000)

$VARIABLE-ADDRESS1 SYSTEM.TO ADDRESS (20000)

$VARIABLE-ADDRESS2 SYSTEM.TO ADDRESS (10000)

$YOURJ'RAGMA EXPORT-OBJECT

Validation Summary Report AVF VSR9050Z17

SD-Scicoe UK Limited Appcodi A - Page 4 of 4 XD Ads MIL-SMD1750A V12

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report.

ValWatioD Swnmay RicX1 AVFVSR W502/

SD-ScimO UK Limitd Appeudi B - Page 1 of 2 XD Ma MLSID-1750A V1.

XDADA

XDADA
invokes the XD Ada compiler to compile one or more source files.

Format XDADA fle-spec[,...J
Command Quaifiers Default*
/LIBRARY .directory-spec /LIBRARY - XDADA$LIB

Positional Qualifier$ Defaults
/[NOIANALYSIS-.DATAI - f Iie-sp 9Cd /NOANALYSISDATA
I[NO)CHECK See text.
/(NOICOPY-.SOURCE ICOPY-.SOURCE
/1NOIDEBUGI - (optiofli, ...D) /DEBUG - ALL
I(NO DIAGNOSTICS[- ftile-specd /NODIAGNOSTICS
I(NOJERROR-.LIMITI - nj /ERROR-.LlMIT -30
/[NOI LIST[- tile-speC] /NOLIST
/(NOILOAD - option]l ILOAD- REPLACE
/[NO]JMACH IN E...CODEJ - option] /NOMACHINE_.CODE
I(NOJNOTE_.SOURCE /NOTE_.SOURCE
I[NOJOPTIMIZE1 - optioni See text.
IINOIPREDEFINED_.UNIT INOPREDEFINED_.UNIT
/[NOISHOW(- option) /SHOW - PORTABILITY
/(NOJSYNTAXONLY /NOSYNTAX_.ONLY
1INO)WARNINGSI - (optionj,... .D1 See text.

Prompt
_ File:

Command Parameters
file-Spec
Specifies one or more XD Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

12

XDADA

If you specify more than one input file, you must separate adjacent file
specifications with a comma (,). You cannot use a plus sign (+) to
separate file specifications.

Description
The XDADA command is one of four commands used to compile com-
pilation units. The other three are the XDACS COMPILE, RECOMPILE
and LOAD commands.

The XDADA command can be used at any time to compile one or
more source files (.ADA). Source files are compiled in the order they
appear on the command line. If a source file contains more than one
compilation unit, they are compiled in the order they appear in the
source file.

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is compiled without
error, the current program library is updated with the object module
and other products of the compilation.

Command Qualifiers
IUBRARY a dlrectory-spec
Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an
already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last
specified in an XDACS SET LIBRARY command. The logical name
XDADA$LIB is assigned to the program library specified in an XDACS
SET LIBRARY command.

Positional Qualifiers
IANALYSISDATA[f tile-spec]
/ItOANALYSISDATA (D)
Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis
file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

13

XDADA

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled,
The default file type is .ANA. No wildcard characters are allowed in the
file specification.

By default, no data analysis file is created.

ICHECK
INOCHECK
Controls whether all run-time checks are suppressed. The JNOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the
source rode.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESSALL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESS-ALL appears in the source.

See the Reference Manual for the Ada Programming Language for more
information on the pragmas SUPPRESS and SUPPRESS.ALL.

/COPY.SOURCE (D)
INOCOPY..SOURCE
Controls whether a copied source file (.ADC) is created in the current
program library when a compilation unit is compiled without error. The
RECOMPILE command (and thus the COMPILE command) requires
that a copied source file exist in the current program library for any unit
that is to be recompiled.

By default, a copied source file is created in the current program library
when a unit is compiled without error.

/DEBUG[= (option[,...1)] (D)
INODEBUG
Controls which compiler debugging options are provided. You can
debug XD Ada programs with the XD Ada Debugger. You can request
the following options:

14

XDADA

ALL Provides both SYMBOLS and TRACEBACK..

NONE Provides neither SYMBOLS nor TRACEBACK.

[NOISYMBOLS Controls whether debugger symbol records are in-
cluded in the object file.

(NOITRACEBACK Controls whether traceback information (a subset of
the debugger symbol information) is included in the
object file.

By defult, both debugger symbol records and traceback information are
included in the object file (/DEBUG -ALL, or equivalently: /DEBUG).

IDIAGNOSTICS[= file-spec)
INODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

IERRORLUIMIT[=n)
/NOERRORJMIT
Controls whether execution of the XDADA command for a given
compilation unit is terminated upon the occurrence of the nth E-level
error within that unit.

Error counts are not accumulated across a sequence of compilation
units. If the IERRORLIMIT -n option is specified, each compilation
unit may have up to n-1 errors without terminating the compilation.
When the error limit is reached within a compilation unit, compilation of
that unit is terminated, but compilation of subsequent units continues.

The /ERRORLIMIT - 0 option is equivalent to ERRORLIMIT - 1.

By default, execution of the XDADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within
that unit (equivalent to /ERROR.LIMIT - 30).

15

XDADA

ILIST[- file-spec]
INOLIST (D)
Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
the current default directory. The default file name is the name of the
source file being compiled. The default file type is US. No wildcard
characters are allowed in the file specification.

By default, the XDADA command does not create a listing file.

/LOAD[= option] (D)
INOLOAD
Controls whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the
XDADA command, processing can involve full compilation, syntax
checking only, and so on. The /NOLOAD qualifier causes the units
in the specified source files to be processed, but prevents the current
program library from being updated.

You can specify the following option:

(NO]REPLACE Controls whether a unit added to the current
program library replaces an existing unit with the
same name. If you specify the NOREPLACE option,
the unit Is added to the current program library only
if no existing unit has the same name, except if the
new unit is the corresponding body of an existing
specification or vice versa.

By default, the current program library is updated with the success-
fuly processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMACHINE._CODE(a option]
/NOMACHINECODE (D)
Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

You can specify one of the following options:

16

XDADA

SYMBOLIC:NONE rrovides machine code listing with no annotation.
SYMBOLIC:NORMAL Provides machine code in the listing file; where

poble, instructions are annotated with simple
Ada names.

SYMBOUC:MAXIMAL Provides machine code in the listing file; where
possible, instructions are annotated with Ada
names, in expanded form if necessary.

The /MACHINECODE qualifier without options is equivalent to
/MACHINECODE - SYMBOLIC:NORMAL.

By default, generated machine code is not included in the listing file.

INOTESOURCE (D)
INONOTE..SOURCE
Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
command uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro.
gram library when a unit is compiled without error.

/OPTIMIZE[= (opton[,...)
INOOPTIMIZE
Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

DEVELOPMENT SusMsted when active development of a program
is in progress. Provides some optimization, but
development considerations and ease of debugging
take preference over optimization. This option
overrides pragmas that establish a dependence on a
subprogram (the pragma INUNE), and thus reduces
the need for recompilations when such bodies are
modified.

17

XDADA

NONE Provides no. optimization. Suppresses expansions in
line of subprograms, including those specified by the
pragma INUNE.

The INOOPTIMIZE qualifier is equivalent to /OPTIMIZE -NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE -SPACE, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier alsb has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for inline expansion and code motion.

The INUNE secondary option can have the following values:

INUNE:NONE Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INUNE
in the source code, without having to edit the
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INUNE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the IOPTIMIZE options in effect when
that unit was compiled.

INLINE:NORMAL Provides normal subprogram expansion in line.
Subprograms to which an explicit pragma IN11NE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for calls to some small local subprograms
(subprograms that are declared in the same unit as
the unit in which the call occurs).

INUNE:SUBPROGRAMS Provides maximal subprogram expansion in line. In
addition to the normal subprogram expansion in
line that occurs when INLINE:NORMAL is specified,
this option results in implicit expansion in line of
some small subprograms declared in other units.
The compiler assumes a pragma INUNE for any
subprogram if it improves execution speed and
reduces code size. This option may establish a
dependence on the body of another unit, as would be
the case if a pragma INLINE were specified explicitly
in the source code.

I6

XDADA

INLINE:MAXIMAL Provides maximal subprogram expansion in line.
Mayimal subprogram expansion in line occurs as for
INLINE:SUBPROGRAMS.

INLINE:GENERICS Provides normal subprogram inline expansion and
maximal generic inline expansion. With this option,
subprogram inline ex,ansion occurs in the same
manner as for [NLINE:NORMAL. The compiler
assumes a pragma INUNEGENERIC for every
instantiation in the unit being compiled unless
a generic body is not available. This option may
establish a dependence on the body of another unit,
as would be the case if a pragma INUNE. GENERIC
were specified explicitly in the source code.

The MOTION secondary option can have the following values:

MOTION:NONE Disables code motion optimizations.

MOTION:LOOPS Permits code motion optimization of loops. Where
the compiler detects that a loop body contains
invariant processing, it may generate code in which
this processing is performed before entry to the loop
instead of within the loop.

MOTION:MAXIMAL Permits all code motion optimizations. In addition
to- the optimization of loops that occurs when
MOTION:LOOPS is specified, this option permits
analogous optimization of if ani cae statements:
where the compiler detects that the branches of an If
or case statement contain common processing, it may
generate code in which this processing is performed
before evaluation of the corresponding condition or
case expression instead of within the branches.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

/OPTIMIZETIME =(INUNE:NORMALMOTION:LOOPS)

/OPTIMIZE- SPACE - (INUNE:NORMALMOTION:MAXIMAL)

/OPTIMIZE= DEVELOPMENT - (INUNE:NONE,MOTION:NONE)

/OPTIMIZE- NONE ([NLINE:NONE, MOTION: NONE)

IPREDEFINED_UNIT
/NOPREDEFINEDUNIT (D)
Controls the compilation of package $RUNTIMESYSTEM, package
STASKINGSYSTEM, and package MACHINE-CODE. You must spec-
ify this qualifier in order to be able to compile these packages. The

19

XDADA

qualifier is not required for the compilation of any other source files.See the XD Ada MIL-STD-1750A Run-Time Reference Manual for more
information.

By default, /PREDEFINED.UNIT is omitted.

ISHOWf. option] (D)
INOSHOW
Controls the listing file options included when a listing file is provided.You can specify one of the following options:
ALL Provides all listing file options.
[NO]PORTABIUTY Controls whether a program portability summaryis included in the listing file. By default, the

XDADA command provides a portability sum.
mary (/SHOW-PORTABILITY). See Appendix Efor details of what can be included in a porta-bility summary. See Chapter 5 of Version 2.0 of
Developing Ada Programs or VMS Systems for more
information on program portability.NONE Provides none of the listing file options (same as
/NOSHOW).

By default, the XDADA command provides a portability summary
(/SHOW - PORTABILITY).

/SYNTAXONLY
INOSYNTAX.ONLY (D)
Controls whether the source file is to be checked only for correct syntax.If you specify the /SYNTAX-ONLY qualifier, other compiler checks arenot per ormed (for example, semantic analysis, type checking, and so
on).
In the presence of the /LOAD-REPLACE qualifier (the default), the/SYNTAX-ONLY qualifier updates the current program library withsyntax-checked-only units. The units are considered to be obsolete and
must be subsequently recompiled.
In the presence of the INOLOAD qualifier, the /SYNTAX ONLY ual-ifier checks the syntax of the specified units but does not update the
library.

By default, the compiler performs all checks.

20

XDADA

/WARNINGS[" (message.optlon(,...]))
INOWARNINGS
Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination[....
NOWARNINGS

WEAKWARNINGS: (destination[.... 1)
NOWEAKWARNINGS

SUPPLEMENTAL: (destination[....)
NOSUPPLEMENTAL

COMPILATION-NOTES: (destinationj)
NOCOMPILATION-NOTES

STATUS: (destination[, ...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS W-level: Indicates a definite problem in a legal
program, for example, an unknown pragma.

WEAKWARNINGS I-level: Indicates a potential problem in
a lexal program; for example, a possible
CUNSTRAINTERROR at run time. These
are the only kind of 1-level messaps that are
counted in the summary statistics at the end of
a compilation.

SUPPLEMENTAL I-level: Additional information associated with
preceding E-level or W-level diagnostics.

COMPILATIONNOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

STATUS i-level: End of compilation statistics and other
messages.

21

XDADA

The defaults are as follows.

/WARNINGS-(WARN:ALLWEAX:ALL,SUPP:ALL,COMP:NONE, STAT:LIST)

Note that abbreviations are valid.

If you specify only some of the message categories with the
)WARNINGS qualifier, the default values for other categories are used.

Examples
1. s XDADA MODEL INTERFACE ,MODEL INTERFACE,CONTROL LOOP

The XDADA command compiles the compilation units con-
tained in the three files MODEL-INTERFACE_.ADA, MODEL_
INTERFACE.ADA, and CONTROL.LOOP.ADA, in the order given.

2. $ XDADA/LIST/SHOW-ALL SCREEN_10 ,SCREEN 10

The XDADA command compiles the compilation units contained
in the two files SCREENO_.ADA and SCREENIO.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN_
IO.LIS and SCREENJO.US in the current default directory. The
/SHOW - ALL qualifier causes all listing file options to be provided
in the listing files.

22

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to linker
documentation and not to this report.

VadaLion Summary Rpow AVFVSRO-OZ

SD-Sdcoa UK Lmitad Appadk B - Par 2 of 2 XD Ada hM[IL-1750A V12

LINK

LINK
Creates an executable image file for the specified units. At Version1.2, a new qualifier, /SELECTIVE, is'supplied. The complete commandspecification is given for convenience.

Format LINK unit-namef,...J lfile-spec[,...Jj
LINK/NOMAIN unit-namef,...] file-spec f,...j
LINK/NOMAIN only permissible with a single address state program,
Command Qualifiers Default$
/AFTER =time /AFTER - TODAY
/BATCII LOG - file-spec See text.
/BRIEF See text./COMMAND[file-spec) See text.
'(NOIDEBUG /NODEBUG
/ELABORATION - file-Spec See text.
/FULL See text.
/(NOIMAGEC file-spec) /IMAGE
/(NOJKEEP /KEEP
/(NOJLOG /NOLOG
I[14O]MAIN IN
/(NOjMAPj - file-specJ INOMAP
/NAME - job-name See text.
/INOJNOTIFY /NOTIFY/OUTPUT = file-spec /OUTPUT - SYSSOUTPUT
I(NOJPRINTERj - queue-name) /NOPAINTEFM
/QUEUE . queue-name /QUEUE - SYS$BATCH
/(NOJSELECTIVE /SELECTIVE
/SUBMIT /WAIT
/WAIT /WAIT

Parameter Qualifiers Default$
/LIBRARY See text.
/MAPPING See text.
/TARGET See text.

LINK

Prompts
*_Unit:

_File:

Command Parameters
unit-name
By default (or if you specify the /MAIN qualifier):

' You can specify up to 16 units (one per address state), the source
code of which must be written in XD Ada.

• The parameter unit-name specifies an XD Ada main program, which
must be a procedure with no parameters.

The INOMAIN qualifier can only be used with a single address state
program. If you specify the /NOMAIN qualifier:

• You can specify one or more foreign units that are to be included
in the executable image. The unit names may include percent signs
(%) and asterisks (*) as wildcard characters. (See the VMS DCL
Concepts Manual for detailed information on wildcard characters.)

• The image transfer address comes from one of the foreign files
specified.

file.spec
Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, IMAPPING, or /TARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library, you must use the /LIBRARY qualifier. The
default file type is .XLB.

If the file is a mapping definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the /TARGET qualifier.
The default file type is .TGD.

If you specify the INOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.,

2

LINK

For a multiple program build, the list of foreign file specifications will
be included in the build for each program in each address state.

Description
The LINK command performs the following steps:

1. Runs the prebuild phase to generate an elaboration list.

2. Checks if a pragma LINKOPTION is specified for the main pro-
gram, and if specified, verifies that the designated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the /TARGET or /MAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK_
OPTION association for units other than the main program unit
is nct checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the
logical name XDADA$TARGETDEF is not defined, and a /TARGET
qualifier is not specified on the LINK command line, an error is
issued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical name XDADASMAPPINGDEF is not defined, and a
/MAPPING qualifier is not specified on the XDACS LINK command
line, the default mapping in the target definition file is used.

3. If LINKINOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

4. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

5. Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINK/COMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

6. Unless the /COMMAND qualifier is specifi.d, performs the build
phase as follows:
a. By default (LINK/WAIT), the command file generated in step

5 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note

3

LINK

that when you specify the /WAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /SUBMIT qualifier, the builder command file
is submitted as a batch job.

7. If the /DEBUG qualifier is included in the command line the debug
symbol table information is placed in the .XXE file.

8. Creates a loadable output file with a default file type of .XXE.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to
a log file if the LINK command is executed in batch mode (XDACS
LINK/SUBM1.

See Chapter 7, Chapter 8, and Chapter 9 for more information on the
XD Ada target-specific builder commands.

Command Qualifiers
/AFTER - time
Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the
specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the VMS DCL Concepts Manual (or type HELP
Specify Date-Time at the DCL prompt) for complete information on
specifying time values.

IBA TCHLOG = file-spec
Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the default file name is the job name
specified with the /NAME - job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINKINOMAIN and no job name and there is a wildcard

4

LINK

character in the first unit specified, the program library manager uses
the default file name XDACSLINK. The default file type is .LOG.

ISRIEF
Directs the builder to produce a brief image map file. The IBRIEF
qualifier is valid only if you also specify the /MAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

" Object module information
* Segment mapping information
" Link run statistics

See also the description of the /FULL qualifier.

ICOMMAND[= fle-Spec]
Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen.
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINKINOMAIN and you used a wildcard character in the
first unit name specified, the program library manager uses the default
file name XDACSLINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes
the generated command file when the LINK command completes
normally or is terminated.

IDEBUG
/NODEBUG (D)
Controls whether a debugger symbol table is generated in the loadable
image file.

By default, no debugger symbol table is created.

5

LINK

IELABORATION = flle.spec
Provides a file specification for the text file generated by the LINK
command. The file is retained by XDACS only when the /COMMAND
qualifier is used: that is, when the result of the LINK operation is to
produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated text file contains the table that directs the elaboration of
library packages in the closure of the units specified. Unless you also
specify the /NOMAIN qualifier, the text file also contains the image
transfer address.

The default directory for the generated text file is the current default
directory. The default file type is .ELB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the /ELABORATION qualifier, XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /COMMAND qualifier, XDACS
deletes the generated text file when the LINK command completes
normally or is terminated.

IFULL
Directs the builder to produce a full image map file, which is the most
complete image map. The /FULL qualifier is valid only if you also
specify the /MAP qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

" Object module information
" Segment mapping information
• Symbol address information
* Exception numbers
* Link run statistics

IIMAGE[= file-spec (D)
INOIMAGE
Controls whether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .XXE. No wildcard characters are allowed in the file specification.

6

LINK

By default, an executable image file is created with a file name compris.
ing up to the first 39 characters of the first unit name specified.

IKEEP (D)
INOKEEP
Controls whether the batch log file generated is deleted after it
is printed when the LINK command is executed in batch mode
(LINKISUBMIT).

By default, the log file is not deleted.

/LOG
/NOLOG (D)
Controls whether a list of all the units included in the executable image
is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

MAIN (D)
/NOMAIN
Controls where the image transfer address is to be found.

The]MAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
speciied.

By default (IMAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP(a file-Spec]
INOMAP (D)
Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for
the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.
The default file type is MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the /FULL qualifier is specified with the /MAP
qualifier, /BRIEF is assumed.

LINK

By default, no image map file is created.

INAME a Job.name
Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINKISUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINKINOMAIN but do not specify the
/NAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACS_LINK. In these cases, the job name is also the file name of the
batch log file.

INOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINKISUBMIT). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated

By default, a message is broadcast.

,"UTPUT = fle-spec
Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYS$OUTPUT. Any diagnostic
messages are written to both SYSSOUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYS$OUTPUT.

IPRINTER[- queue-name)
/NOPRINTER (D)
Controls whether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYS$PRINT.

8

LINK

By default, the log file is not queued for printing. If you specify
/NOPRINTER, /KEEP is assumed.

/QUEUE a queue-name
Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINKISUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in
the default system batch job queue, ,YS$BATCH.

ISELECTIVE (D)
INOSELECTIVE
Specifies whether selective linking is performed.

Performing selective linking ensures that only subprograms that are
called will be linked into the prcgram image. Subprograms within the
closure of the main program that are not actually called will be omitted
from the image file. Selective linking produces a program image that
has been optimized according to size.

Non-selective linking ensures that all defined subprograms are linked
into the image.

By default, selective linking is performed.

ISUBMIT
Directs XDACS to submit the command file generated for the builder
to a batcn queue. You can continue to issue commands in your current
process without waiting for the bch job to complete. The builder
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(UNKWAn).

IWAIT
Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your #.urrent process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

9

LINK

Parameter Qualifiers
ILIBRARY
Indicates that the associated input file is an object module library to be
searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

By default, if you do not specify the /LIBRARY qualifier, the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING
Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the /MAPPING qualifier, the file is
assumed to be an object file with a default file type of .XOB,

ITARGET
Indicates that the associated input file is a target definition file. Target
definition files describe the target system's memory. The default file
type is .TGD.

By default, if you do not specify the /TARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples
1 XDACS> LINK CONTROLLOOP

%ACS-I-CL LINKING, Invoking the XD Ada Builder

The LINK command forms the closure of the unit CONTROL_
LOOP, which is an XD Ada main program, creates a builder com-
mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL-LOOP LOOPFUNCTIONS/LIBRARY

%ACS-I-CLSUBMITTED, Job CONTROL-LOOP (queue ALLBATCH, entry 134)
started on FAST-BATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL-LOOP against the library LOOP.
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

10

LINK
3. XDACS> LINK/NOMAIN FLUID VOLUMECOUNTER MONITOR.XOS

%ACS-I-CL LINKING, InvokIng the XD Ada Builder

The LINK command builds the XD Ada units FLUID VOLUMEand COUNTER with the foreign object file MONVTOR.XOB. The/NOMAIN qualifier tells the builder that the image transfer addressis in the foreign file.

11

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range -2**15 .. (2**15)-1;
type LONG-INTEGER is range -2**31 .. (2**31)-1;

type FLOAT is digits 6 range -(2**128 - 2**106) .. (2**128 - 2**106);
type LONG-FLOAT is digits 9 range -(2**128 - 2**96) .. (2**128 - 2**96);

type DURATION is delta 1.OE-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Summary Report AVF VSRk905W

SD-Sdwo UK Limited Appendix C - Page 1 XD Aa ML-STD-17SOA V12

Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

* Listing the XD Ada pragmas and attributes.

• Giving the specification of the package SYSTEM.

* Presenting the restrictions on representation clauses and unchecked
type conversions.

* Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

* Giving the interpretation of expressions in address clauses.

* Presenting the implementation-dependent characteristics of the
input-output packages.

* Presenting other implementation-dependent characteristics.

Implementation-Dependent Characteristics F-1

F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS-ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

* CALLSEQUENCE_FUNCTION (see Annex B)
* CALL.SEQUENCE-PROCEDURE (see Annex B)
* EXPORT-EXCEPTION (see Section 13.9a.3.2)
" EXPORT-FUNCTION (see Section 13.9a.1.2)
* EXPORT-OBJECT (see Section 13.9a.2.2)
• EXPORT-PROCEDURE (see Section 13.9a.1.2)
* IMPORT.EXCEPTION (see Section 13.9a.3.1)
" IMPORTFUNCTION (see Section 13.9a.1.1)
" IMPORT-OBJECT (see Section 13.9a.2.1)
* IMPORT-PROCEDURE (see Section 13.9a.1.1)

* LEVEL (see Section 13.5.1)
SLINKOPTION (see Annex B)

* SUPPRESSALL (see Section 11.7)
• TITLE (see Annex B)
* VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes
XD Ada provides the following attributes, which are defined elsewhere

in the text. See Appendix A for a descriptive attribute summary.

* BIT (see Section 13.7.2)
* MACHINESIZE (see Section 13.7.2)
* TYPECLASS (see Section 13.7a.2)

F-2 Implementation-Dependent Characteristics

F.3 Specification of the Package System

The package SYSTEM for the MIL-STD-1750A is as follows:

F.3.1 Package System for the MIL-STD-1750A Target

package SYSTEM L

type NAME is (MILSTD75OA);

SYSTEM NAME constant NAME :- MILSTD_1750A;
STORAGEUNIT constant 1- 16;
MEMORYSIZE constant $- 2**17;
MININT a constant :- -(2**31);
MAXINT : constant 1- 2**31-1;
MAX-DIGITS t constant :- 9;
MAX MANTISSA constant s- 31;
FINE-DELTA constant - 2.0**(-31);
TICK conatant a- 100.OE-6;
subtype PRIORITY is INTEGER range 0 .. 15;

subtype LEVEL is INTEGER range 0 .. 7;

-- Address type

type ADDRESS is private;

ADDRESSZERO a constant ADDRESS;
type ADDRSSINT is range -32768 .. 32767;
function TO ADDRESS (X i ADDRESS INT) return ADDRESS;
function TO ADDRESS (X : {universal_integer}) return ADDRESS;
function TO ADDRESSINT (X I ADDRESS) return ADDRESSINT;

function "+" (LEFT £ ADDRESS; RIGHT : ADDRESSINT) return ADDRESS;

function + (LEFT a ADDRESSINT; RIGHT t ADDRESS) return ADDRESS;
function - (LEFT a ADDRESS; RIGHT t ADDRESS) return ADDRESS.INT;

function -" (LEFT a ADDRESS; RIGHT : ADDRESSINT) return ADDRESS;

-- function -" (LEFT, RIGHT a ADDRESS) return BOOLEAN;
-- function "I-" (LEFT, RIGHT a ADDRESS) return BOOLEAN;

function *<* (LEFT, RIGHT t ADDRESS) return BOOLEAN;
function "- (LEFT, RIGHT a ADDRESS) return BOOLEAN;
function *>" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

function ">-" (LEFT, RIGHT i ADDRESS) return BOOLEAN;

Note that because ADDRESS is a private type

-- the functions "-* and "/-" are already available

Implementation-Dependent Characteristics F-3

-Generic functions used to a-cess memory

generic
type TARGET is privae;

function FETCI FROM ADDRESS (A :ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGN-TOADDRESS (A : ADDRESS; T i TARGET);

type TYPECLASS is (TYPECLASSENUMERATION,
TYPECLASSINTEGER,
TYPECLASS-FI XED POINT,
TYPECLASS FLOATING POINT,
TYPECLASS ARRAY,
TYPE CLASSRECORD,
TYPE CLASSACCESS,
TYPE CLASS -TASK,
TYPE CLASS ADDRESS);

-- XD Ada hardware-oriented type. and functions

type SIT -ARRAY is array (INTEGER ranges <>) of BOOLEAN;
prague PACK(SIT _ARRAY);
subtype BITARRAY16 is BITARRAY (0 15);
subtype BIT-ARRAY_32 in BIT-ARRAY (0 .. 31);

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNED7WORD'SIZE use 16;

function "not" (LEFT jUNSIGNED WORD) return UNSIGNED WORDt
function *and* (LEFT, RIGHT t UNSIGNED7 WORD) return UNSIGNED7 WORD;
function "or" (LEFT, RIGHT t UNSIGNED WORD) return UNSIGNED WORD;
function "xor* (LEFT, RIGHT z UNSIGNED7WORD) return UNSIGNED7WORD;

function TO UNSIGNEVDWORD (X i ITARRAY 16) return UNSIGNED .WORD;
function TO BITARRAY_16 (X tUNSIGNED WORD) return BIT ARRAY .16;

type UNSIGNEDywORD-ARRAY is array (INTEGER range <>) of UNSIGNED-WORD;

type UNSIGNED-LONGWORD is range MININT .. MAX INT;

for UNSIGNED WORD'SIZE use 32;

function "not" (LEFT t UNSIGNED-LONGWORD) return UNSIGNED LONGWORD;
function *and" (LEFT, RIGHT :UNSIGNED LONGWORD) return UNSIGNED LONGWORD,
function "or" (LEFT, RIGHT : UNSIGNED7LONGWORD) return UNSIGNED -LONGWORD;
function *xor" (LEFT, RIGHT t UNSIGNED7 LONGWORD) return UNSIGNED-LONGWORD;

function TO UNSIGNEDLONGWORD (X :BITARRAY 32) return UNSIGNED LONGWORD;
function T0ITARRAY.32 (X :UNSIGNEDWORD) return SIT _ARRAY_32;

type UNSIGNED-LONGWORD.ARRAY is array (INTEGER range <>) of UNSIGNED-LONGWORD;

F-4 Implemnentation-Dependent Characteristics

-- Conventional names for static subtypes of type UNSIGNEDLONGWORD

subtype UNSIGNED1 is UNSIGNEDLONGWORD range 0 2** 1-1;

subtype UNSIGNED_2 is UNSIGNEDLONGWORD range 0 . ** 2-1;
subtype UNSIGNED_3 is UNSIGNDO_LONGWORD range 0 2** 3-1;

subtype UNSIGNED_4 is UNSIGNEODLONGWORD rouge 0 2** 4-1;
subtype UNSIGNED5 is UNSIGNEDJLONGWORD range 0 2** 5-i

subtype UNSIGNED6 in UNSIGNED LONGWORD range 0 2** 6-i;
subtype UNSIGNED7 is UNSIGNED!LONGWORD range 0 2"* 7-I;
subtype UNSIGNED-8 is UNSIGNBD_LONGWORD range 0 2** 8-1;
subtype UNSIGNED9 is UNSIGNEDLONGWORD range 0 2** 9-1;
subtype UNSIGNED_10 is UNSIGNED_LONGWORD rouge 0 2*-10-1;
subtype UNSIGNED_11 is UNSIGNRDJLONGWORD range 0 2"'11-1;
subtype UNSIGNED12 is UNSIGNEDLONGWORD range 0 2.-12-I;
subtype UNSIGNRD 13 is UNSIGNEDLONGWORD range 0 20*13-1;
subtype UNSIGNED-14 is UNSIGNEDLONGWORD range 0 2-14-I;
subtype UNSIGNED_1S is UNSIGNEDLONGWORD range 0 2-*15-1;
subtype UNSIGNED-16 io UNSIGNEDLONGWORD range 0 2-16-1;
subtype UNSIGNED-17 is UNSIGNED LONGWORD rage 0 .. 2**17-I;
subtype UNSIGNED_18 is UNSIGNED LONGWORD range 0 .. 2**18-1;
subtype UNSIGNED-19 is UNSIGNED LONGWORD range 0 .. 2--19-1;
subtype UNSIGNED_20 is UNSIGNEDLONGWORD range 0 2-.20-I;
subtype UNSIGNED.21 is UNSIGNED_LONGWORD range 0 2-21-i1;
subtype UNSIGNED_22 is UNSIGNEDLONGWORD range 0 .. 2-*22-I;
subtype UNSIGNED23 is UNSIGNED LONGWORD range 0 2-23-1;
subtype UNSIGNED24 is UNSIGNEDLONGWORD range 0 2-*24-i;
subtype UNSIGNED_25 is UNSIGNEDLONGWORD range 0 2-*25-I;
subtype UNSIGNBD-26 Is UNSIGNED LONGWORD range 0 2-'26-1;
subtype UNSIGNED_27 is UNSIGN!DLONGWORD range 0 2**27-I;
subtype UNSIGNED28 is UNSIGNEDLONGWORD range 0 2**28-I;
subtype UNSIGNED_29 is UNSIGNEDLONGWORD range 0 2.29-1;
subtype UNSIGNED 30 is UNSIGNEDLONGWORD range 0 2.-30-1;
subtype UNSIGNED_31 is UNSIGNEDLONGWORD range 0 2**31-i;

private
-- Not shown

and SYSTEM;

F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

Implementation.Dependent Characteristics F-5

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
MIL-STD-1750A 16-bit logical address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a MIL-STD.1750A interrupt number
in the range 0 .. 15.

In XD Ada for MIL-STD-1750A, values of type SYSTEM.ADDRESS are
interpreted as integers in the range -215 .. 215 -1. As SYSTEM.ADDRESS
is a private tipe, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 13.10.2.

F-6 implementation-Dependent Characteristics

F.8 Impiementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL-1O and DIRECT.IO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised
STATUSERROR Raised by an attempt tu operate upon or close a file

that is not open (no files c.n be opened).
NAME-ERROR Raised if a file name is given with a call of CREATE

or OPEN.
USEERROR Raised if exception STATUSERROR is not raised.

MODE-ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOWLEVEL.1O is provided.

F,81 The Package TEXTJO

The package TEXT-IO conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD-INPUT and STANDARD.OUTPUT only. The possible
exceptions that are raised by package TEXT-1O are as follows:

Implementation.Dependent Characteristics F-7

Exception When Raised

STATUS-ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME-ERROR Raised if a file name is siven with a call of CREATE
or OPEN.

MODE-ERROR Raised by an attempt to read from, or test for
the end of, STANDARD-OUTPUT, or to write to
STANDARDJINPUT.

END-ERROR Raised by an attempt to read past the end of
STANDARDINPUT.

USE-ERROR Raised when an unsupported operation is attempted,
that would otherwise be legal.

The type COUNT is defined as foliows:

type COUNT L range 0 .. INTEGZR'LAST;

The subtype FIELD is defined as follows:

type FIELD Ls INTEGER range 0 .. 132;

F.8.2 The Package 1OEXCEPTIONS

The specification of the package IO_.EXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other Implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F-8 Implementatlon-Dependent Characteristics

F.9.2 Values of Interior Attributes
The ranges of values for integer types declared in package STANDARD
are as follows:'
INTEGER -215 . 215 -1 (-32768.. 32767)
LONG-INTEGER -23 231 -1 (-2147483648.. 2147483647)

For the package TEXT..IO, the range of values for types COUNT andFIELD are as follows:
COUNT 0 .. 2'1 -1 (0.. 32767)
FIELD 0.. 132

F.9.3 Values of Floating-Point Attributes
Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

Implementation.Dependent Characteristics F-9

FLOAT LONGFLOAT

DIGITS 6 9

SIZE 32 48

MANTISSA 21 31

EMAX 84 124

EPSILON 2-20 2- 30

SMALL 2- &s 2- 125
LARGE 2"-2'6 2124-293

SAFE-EMAX 127 127
SAFE-SMALL 2- 126 2- 126

SAFE-LARGE 2127- 2106 2127-2%

FIRST -(2 12s-2106) -(2 1s-2%)

LAST 212s-2106 212-2%

MACHINE-RADIX 2 2

MACHINE-MANTISSA 23 39

MACHINE-EMAX 127 127

MACHINE-EMIN -128 128

MACHINE.ROUNDS FALSE FALSE

MACHINE-OVERFLOWS FALSE FALSE

F-Ia Implementation-Deoendent Characteristics

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as
follows:

DURATION'DELTA 1.E-4 (10- 4)

DURATION'SMALL 2#1.0#E-14 (2-14)
DURATION 'FIRST -131072.0000 (-217)

DURATION'LAST 131071.9999 (2' -'DELTA)

F.9.5 Implementation Limits

Umit Descript.- n

255 Maximumr identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure'

2 12 Maximum number of library units and subunits in an execution
closure2

216 -1 Maximum number of enumeration literals in an enumeration
type definition

2 16 -1 Maximum number of lines in a source file

2's x 16 Maximum number of bits in any object

2 6 -1 Maximum number 0, exceptions

'The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

implementation-Dependent Characteristics F-11

Appendix F

Implementation-Dependent
Characteristics

This appendix describes Version 1.2 additions to the range of
implementation-dependent pragmas.

FA Implementation-Dependent Pragmas

XD Ada MIL-STD-1750A Version 1.2 supplies three new pragmas,
DIRECTINTERRUPTLENTRY, IDENT and TIME-SLICE. In the follow-
ing full list of supported pragmas, references refer to sections in the
XD Ada MIL-STD-1750A Supplement to the Ada Language Reference Manual,
unless updated by sections supplied in this manual.

* CALLSEQUENCEFUNCTION (see Annex B)

* CALL-SEQUENCEPROCEDURE (see Annex B)
* DIRECTINTERRUPT-ENTRY (see Section 13.5.1)

* EXPORT-EXCEPTION (see Section 13.9a.3.2)

* EXPORTFUNCTION (see Section 13.9a.1.2)

* EXPORTOBJECT (see Section 13.9a.2.2)

* EXPORTPROCEDURE (see Section 13.9a.1.2)

* IDENT (see Annex B)
* IMPORT-EXCEPTION (see Section 13.9a.3.1)

* IMPORTFUNCTION (see Section 13.9a.1.1)

* IMPORT-OBJECT (see Section 13.9a.2.1)

* IMPORT-PROCEDURE (see Section 13.9a.1.1)

Implementation-Dependent Characteristics F-1

" LEVEL (see Section 13.5.1)
* LINK..OPTION (see Annex B)
" SUPPRESS-.ALL (see Section 11.7)
" TITLE (see Annex B)
" TIMESLICE (see Section 9.8a)
* VOLATILE (see Section 9.11)

F-2 Implementation-Dependent Characteristics

Chapter 13

Representation Clauses and
Implementation-Dependent

Features

Supplementary XD Ada information is provided for Sections 13.1, 13.2,
13.3, 13.4, 13.5, 13.5.1, 13.7, 13.7.1, 13.7.2, 13.7.3, 13.8, 13.9, 13.10.1
Rnd 13.10.2. Two additional sections, Section 13.7a and Section 13.9a,
provide XD Ada information on the package SYSTEM and on the XD
Ada import and export pragmas.

13.1 Representation Clauses

The following Information supplements paragraphs 4 and 8:
In XD Ada, an address clause can only apply to a variable or a single
entry; an address clause cannot apply to a constant, subprogram,
package, or task unit. See Section 13.5 for further explanation.

The foilowing information supplements paragraph 13:
Pragma PACK is implemented in XD Ada. As the behavior of pragma
PACK is implementation dependent, users are advised to use represen-
tation clauses to ensure a particular representation across targets.

In XD Ada, all array and record components are aligned on word
boundaries by default; the effect of pragma PACK on a record or
array is to cause those components that are packable to be allocated in
adjacent bits without regard to word boundaries. Whether any particular
component is packable depends on the rules for its type; the XD Ada
MIL-STD-1750A Run-Time Reference Manual gives information on which

13.1 Representation Clauses 13-1

types can be packed as components of composite types, as well as
information on how these types are packed.

A record component that begins a variant is always allocated at the next
word boundary; a variant that begins on other than a word boundary
can be obtained only with a record representation clause.

XD Ada provides no additional representation pragmas.

The following information supplements paragraph 14:
XD Ada does not allow a representation clause for a type that depends
on a generic formal type. A type depends on a generic formal type
if it has a subcomponent of a generic formal type or a subcomponent
that depends on a generic formal type, or If it is derived from a generic
formal type or a type that depends on a generic formal type.

13.2 Length Clauses

The following information supplements paragraph 6:
In XD Ada, for a discrete type, the given size must not exceed 32
(bits). The given size becomes the default allocation for all objects and
components (in arrays and records) of that type. However, sizes of
objects may be increased by the compiler for optimization purposes.

For integer and enumeration types, the given size affects the internal
representation as follows: for integer types, high order bits are sign-
extended; for enumeration types, the high order bits may be either
zero- or sign-extended depending upon the base representation that
is selected. For all other types, the given size must equal the size that
would apply in the absence of a size specification.
The following information supplements paragraph 8:
The specification of a collection size is interpreted as follows. If the
value of the expression is greater than or equal to zero, the specified
size is then used as the initial size of the collection; the collection is not
extended should that Initial allocation be exhausted. In the absence of
a T'STORAGE.SIZE, no storage is initially allocated for the collection;
storage is allocated from the heap as needed, until all heap memory is
exhausted. If the value is less than zero, the exception CONSTRAINT-
ERROR is raised.
The following Information supplements paragraph 10:
A task storage specification overrides the default task storage size. The
specification is interpreted as follows. If the value of the expression is

13-2 Length Clauses 13.2

greater than zero, the specified size determines the number of storage
units (words) to be allocated for an activation of the task of the given
type. In the absence of a T'STORAGE.SIZE, a default allocation is
used. If the value is less than zero, the exception CONSTRAINT-
ERROR is raised.
The following information supplements paragraphs 8 and 10:

NOTE

The XD Ada MIL-STD.1750A Run-Time Reference Manual dis-
cusses task and access type storage and storage allocation in
more detail.

The following Information supplements paragraph 12:

Arbitrary values of small are not accepted.

13.3 Enumeration Representation Clauses

The following information supplements paragraph 4:
In XD Ada, the only specific restriction on enumeration representation
clauses is that each expression for an integer code must have a value in
the range MININT .. MAX_INT.

13.4 Record Representation Clauses

The following information supplements paragraph 4:
For statically allocated objects and for objects allocated from a collection
in XD Ada, the simple expression in an alignment clause must be a
power of two. The upper limit is 216. The alignment then occurs at
a location that is a number of words times the val-.P oi the simple
expression: a value of I causes word alignment, a value of 2 causes
longword alignment, and so on.

Further restrictions apply for objects declared within a subprogram,
where XD Ada restricts the alignment to mod 1. In other words, stack-
allocated objects can only be word aligned.

Bit-alignable representation clauses are provided for discrete types,
arrays of discrete types, and record types.

See the XD Ada MIL-STD.1750A Run-Time Reference Manual for informa-
tion on how objects are allocated.

13.4 Record Representation Clauses 13-3

The following information supplements paragraph 5:
A component clause specifies the storage place of a component relative to
the start of the record. In XD Ada for MIL-STD-1750A targets, the size
of a storage unit (SYSTEM.STORAGEUNIT) is 16 bits (one word). If
the number of bits specified by the range is sufficient for the component
subtype, the requested size and placement of the field is observed (and
overlaps storage boundaries if necessary); otherwise, the specification is
illegal. For a component of a discrete type, the number of bits must not
exceed 32; for a component of any other type, the size must not exceed
the actual size of the component. See the XD Ada MIL-STD-1750A Run.
Time Reference Manual for information about determining the number of
bits that are sufficient for any given subtype.

Component values in XD Ada are biased when a component clause
requires a very small component storage space; each value stored
is the unsigned quantity formed by subtracting COMPONENT_
SUBTYPEFIRST from the original value. See the XD Ada MIL-STD-
1750A Run-Time Reference Manual for more detailed information.

Component clauses in XD Ada are restricted as follows. Any com-
ponent that is not packable must be allocated on a word boundary.
Components that are packable can be allocated without restriction. See
the XD Ada MIL-STD-1750A Run-Time Reference Manual for a definition
and description of packable components.

The following information supplements paragraph 6:
Components named in a component clause are allocated first; then,
unnamed components are allocated in the order in which they are
written in the record type declaration. Variants can be overlapped. If
pragma PACK is specified, packed allocation rules (see Section 13.1)
are used; otherwise, unpacked allocation is used.

The following information supplements paragraph 8:
XD Ada generates no implementation-dependent components or
names.

The following information supplements the Notes section:
The example of record representation and address clauses in the
Reference Manual for the Ada Prog~amming Language is not relevant for
XD Ada as it assumes that type ADDRESS is represented in 24 bits,
whereas in XD Ada type ADDRESS is represented in 16 bits. The
following example is appropriate to XD Ada:

13-4 Record Representation Clauses 13.4

Example:

type CONDITIONCODE is (C,P,Z,N);

type CONDITIONCODES is array (CONDITION-CODE) of BOOLZAN;
prague PACK (CONDITIONCODBS);

type PROGRAMSTATUS-WORD La
record

CS CONDITION CODES
RESERVED i INTEGER range 0 15;
PS t INTEGER range 0 .. 15;
AS I INTEGER range 0 .. 15;

end record;

for PROGRAM.STATUSWORD use
record at mod 1;

CS at O range 0 .. 3;
RESERVED at 0 range 4 .. 7;
PS at 0 range .. 11;
AS at 0 range 12 .. 15;

end record;

for PROGRAM STATUS WORD'SIZE us* 1 * SYSTEM.STORAGEUNIT;

Note on the example:

The record representation clause defines the record layout. The length
clause guarantees that exactly one storage unit is used.

Component Specificatlon Example:

subtype S is INTEGER range 10 .. 13;

type RC is
record

X I S;

Y I S;
end record

for REC use

record
X at 0 range 0 .. 3; -- legal because 4 bits

-- are sufficient
Y at 0 range4 .. 4; -- illegal because I bit is

-- not enough to represent
-- an integer of subtype S

end record;

13.4 Record Representation Clauses 13-5

Notes on the example:

The subtype declaration in this example implies an integer with a min-
imum size of four bits. However, the components X and Y of subtype
S are biased and can be stored in only two bits. The component clause
for X is legal because it requires at least the minimum number of bits
required for the integer subtype; the component clause for Y is illegal
because it does not allow enough bits to represent the integer subtype.

13.5 Address Clauses

The following information supplements paragraph 7:

Like VAX Ada, XD Ada supports address clauses.

In XD Ada, the simple name must be the name of a variable. XD Ada
does not allow address clauses that name constants; or subprogram,
package, or task units.

An intermediate pointer is created only if the resulting address is not a
compile-time constant.

The placement of an address clause in XD Ada must follow the rules
given in Section 13.1. In other words, the clause and the variable
declaration must both occur immediately within the same declarative
part or package specification, and the declaration must occur before
the clause. The restrictions for forcing occurrences also apply; with
respect to address clauses, any occurrence of the variable name after Its
declaration is a forcing occurrence.

Address clauses are not allowed in combination with any of the XD Ada
pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored.

The following information supplements the Notes section:

Also, if an address clause is specified for an object of a type that has
been declared with an alignment clause, the alignment required for the
address is checked against the alignment given for the record type. If
the two are incompatible, the exception PROGRAMERROR is raised.

The same check applies to a type that contains a component of a type
that has been declared with an alignment clause (the alignment of the
component forces the alignment ol the containing type).

13-8 Address Clauses 13.5

13.5.1 Interrupts

The foilowing information supplements all of this section:

Unlike VAX Ada, XD Ada supports interrupts. The address in the use
clause is the 1750A interrupt number.

XD Ada provides the additional pragma LEVEL. This pragma is given
for a task type, or single task of anonymous type, and gives the level for
its interrupts.

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MIL-STD-
1750A Run-Time Reference Manual gives examples of Interrupt handlers.

Tasks with interrupt entries but no pragma run at interrupt level whilst
accepting an interrupt in a rendezvous. Other interrupts of the same
level or lower levels are inhibited. It is possible to lose interrupts with
this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the pragma behaves like an ordinary
entry call. An interrupt entry to a task with no pragma behaves like a
conditional entry call. If there is an accept statement waiting for the
interrupt, the body of the accept statement is executed immediately.
When the body is complete, the task is inserted in the ready queue
and the interrupt completed by a return-from-interrupt instruction. The
accept statement can make excursions into other routines, and can even
make entry calls, but must not suspend the task before the interrupt
is dismissed, r.therwise the program repeatedly services the interrupt
unsuccessfully.

Writing interrupt handlers in XD Ada requires detailed knowledge of
the behavior of the target computer's Interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

13.5.1 Interrupts 13-7

13.7 The Package System

The following information supplements paragraph 1:
XD Ada additions to the package SYSTEM are described in Section
13.7a.

The following information supplements paragraph 3:
Addresses are treated as 16-bit logical addresses as represented on
the target in a register or memory location. The physical address is
determined by the page registers and the address state.

The following information supplements paragraph 5:
In XD Ada, the enumeration literal for SYSTEM-NAME is MIL-STD-
1750A.

The following information supplements paragraph 7:
In XD Ada, the value given for STORAGEUNIT must be 16 (bits).

The following information supplements paragraph 9:

In XD Ada, the number given for MEMORY-SIZE must be 131072. Like
VAX Ada, XD Ada does not provide support for checking or ensuring
that the given size is not exceeded.

The following information supplements paragraph 11:
As with VAX Ads, XD Ada imposes no further limitations on these
pragmas. To reduce the amount of recompilation required, XD Ada
identifies those units that have a real dependence on the values affected
by these pragmas; only such units must be recompiled. In particular,
predefined XD Ada packages do not depend on the values affected by
these pragmas, and none require recompilation if these pragmas are
used.

13.7a XD Ada Additions to the Package SYSTEM

In addition to the language-required declarations in package SYSTEM,
XD Ada declares the operations, constants, types, and subtypes de-
scribed in the following sections.

13-8 XD Ada Additions to iie Package SYSTEM 13.7a

13.7a.1 Properties of the Tvoe ADDRESS

In XD Ada, ADDRESS is a private type for which the following opera-
tions are declared:

-- Address type

type ADDRESS L private;

ADDRESSZERO a consteant ADDRESS;

type ADDRESSINT is range -32768 32767;

lunetie TO ADDRESS (X i ADDRESSINT) return ADDRESS;
funettes TO.ADDRESS (X i (universalinteger)) returs ADDRESS;
funetie TOADDRISSINT (X i ADDRESS) return ADDRESS INT;

funetien *+* (LEFT t ADDRESS; RIGHT t ADDRESSINT) return ADDRESS;
funetien "4" (LEFT i ADDRESS INT; RIGHT t ADDRESS) return ADDRESS;
funeti e - (LEFT a ADDRESS; RIGHT a ADDRESS) return ADDRESS INT;
ueti en "-" (LEFT I ADDRESS; RIGHT 3 ADDRESSINT) return ADDRESS;

-- flunete s" (LEFT, RIGHT t ADJRESS) return BOOLEAN;
-- function "-" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

funtio "<" (LIFT, RIGHT s ADDRESS) return BOOLEAN;
funetion "<= (LEFT, RIGHT i ADDRESS) return BOOLEAN;
function >" (LEFT, RIGHT a ADDRESS) return BOOLEAN;
funetien s>-" (LEFT, RIGHT t ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "-" and "/-" are already available

-- Generic functions used to access memory

generic
type TARGET is private;

funetien FETCH FROM ADDRESS (A a ADDRESS) return TARGET;

generie
type TARGET is private;

proecedure ASSIGNTO ADDRESS (A i ADDRESS; T : TARGET);

The addition, subtraction, and relational functions provide arithmetic
and comparative operations for addresses. The generic subprograms
FETCHFROMADDRESS and ASSIGN_TO_ADDRESS provide op.
erations for reading from or writing to a given address interpreted as
having any desired type. ADDRESS-ZERO is a deferred constant whose
value corresponds to the first (machine) address.

Properties of the Type ADDRESS 13.7a.1 13-9

In an instantiation of FETCH-.FROM_.ADDRESS or ASSIGN-TO-
ADDRESS., the actual subtype corresponding to the formal tyeT
must not be an unconstrained array type or an unconstrained"4ye with
discriminants. If the actual subtype is a type with discriminants, the
value fetched by a call of a function resulting from an instantiation of
FETCH-.FROM..ADDRESS is checked to ensure that the discriminants
satisfy the constraints of the actual subtype. In any other case, no check
is made.

Example:
X :INTEGER;
A SYSTRM.ADDRSSS to XIADDRESSJ - legal

function rETCH in now FETCHFROtMADDRSS(INT3G3R)j
presedue ASSIGN to now ASSIGN..TO.ADR3SS(INT3GZR~j

X to VITCH(A): - like OX I- A.allj"
ASSIGN(A,X)g - like "A.411 So X;'

13.7a.2 Type Class Enumeration Type
XD Ada declares the following enumeration type for identifying the
various Ada type classes:

type TYPE CLASS is (TYPECLASS INUMERAT ION,
TYPNCLASS -INTEGER,
TYPECLASS - XE1(NDOINT,
TYPECLASS FLOATINQPOINT,
TYPECLASS ARRAY,
TYPE.CLASS -RECORD,
TYPECLASSACCZSSt
TYP3_CLASSTASK,
TYPECLASS..AODRESS);

In addition to the usual operations for discrete types (see Section 3.5.o),
XD Ada provides the attribute TYPE-.CLASS.

For every type or subtype T:
T 'TYPE_.CLASS Yields, the value of the type cia for the full type of

T. If T is a generic formal type, then the value is that
for the corresponding actual subye. The value of
this attribute is of the type TYPE..CLASS.

This attribute is only allowed if its unit names the predefined package
SYSTEM in a with clause.

13-10 13.7a.2 Type Class Enumeration Type

Examples:
Given

type MYINT is range 1..10;
type NEWINT is now STRING;
package PACK ia

type PRIV in private;
private

type PRIV ia now FLOAT;
ead PACK;

then

-- YINT'TYPE CLASS equals TYPE CLASS.3NTEGER
-NNW INT'TYPjCLASS equals TYPECLASSARRAY
-PRIV'TYPE CLASS equals TYPZCLASSFLOATINGPOINT

13.7a.3 Hardware-Oriented Types and Functions

XD Ada declares the following types, subtypes, and functions for con-
venience In working with MIL-STD-1750A hardware-oriented storage:

-- XD Ada hardware-oriented types and functions

type SIT ARRAY is array (INTEGER range <>) of BOOLEAN;
prague 1ACK(SIT-AaRAY);
subtype BITARRAY 16 in BIT ARRAY (0 15);
subtype BITAMRY32 in BIT7ARRAY (0 31);
type UNSIGN9DWORD is range 0 .. 65535;
for UNSIGNED WORD'SIZE us& 16;
function "not" (LEFT : UNSIGNED WORD) return UNSIGNED WORD;
function *and" (LEFT, RIGHT i UNSIGNED7WORD) return UNSIGNEDyWORD;
function "or" (LEFT, RIGHT i UNSIGNED7WORD) return UNSIGNED..WORD;
function *xor" (LEFT, RIGHT i UNSIGNED7WORD) return UNSIGNRD-WORD;

function TO UNSIGNED WORD (X 2 BIT ARRAYJ6) rotorn UNSIGNID_)IORD;
function TBITABRA%6 (X i UNSIGNED WORD) return BITARRA%16;

type UNSIGN2DWORD.ARRAY is array (INTEGER ranget <>) of UNSIGNEDWORD;

type UNSIGNNDLONGWORD is range MINJINT ..- MAXINT;

for UNSIGNEDLONGWORD'SIZZ use 32;

function *not" (LEFT i UNSIGNED LONGWORD) return UNSIGNED-LONGWORD;
function "and" (LEFT, RIGHT i UNSIGNEOLONGWORD) return UNSIGNED LONGWORD;
funation *or" (LEFT, RIGHT aUNSIGNED LOAlGWORD) return UNSIGNED7LONGWORD;
function Ixor" (LEFT, RIGHT aUNSIGNED LONGWORD) return UNSIGNED-LONGWORD;

Hardware-Oriented Types and Functions 13.7a.3 13-11

function TOUNSIGNEDLONGWORD (X : BITARRAY_32) return UNSIGNEDLONGWORD;
function TO BITARRAY_32 (X -ASIGNED WORD) return BITARRAY_32;

type UNSIGNEDLONGWORD.ARRAY is array (INTEGER runge <>) of UNSIGNED LONGWORD;

13.7a.4 Conventional Names for Unsigned Longwords

The following XD Ada declarations provide conventional names for
static subtypes of the predefined type UNSIGNEDLONGWORD:

subtype UNSIGNRD_1 is UNSIGNED LONGWORD range 0 2** 1-1;
subtype UNSIGNED_2 to UNSIGNED LONGWORD range 0 2** 2-1;
subtype UNSIGNED_3 Lu UNSIGNEDLONGWORD range 0 2** 3-1;
subtype UNSIGNED_4 is UNSIGNEDLONGWORD range 0 2** 4-1;
subtype UNSIGNED- 5 is UNSIGNEDLONGWORD range 0 2** 5-1;
subtype UNSIGNED_6 L UNSIGNEDLONGWORD range 0 2** 6-1;
subtype UNSIGN.D7 is UNSIGNEDLONGWORD range 0 2** 7-1;
subtype UNSIGNED_8 a8 UNSIGNEDLONGWORD range 0 2* 8-1;
subtype UNSIGNED 9 L UNSIGNEDLONGWORD rang* 0 2* 9-1;
subtype UNSIGNED 10 is UNSIGNEDLONGWORD range 0 .. 2*10-1;
subtype UNSIGNED_11 Lu UNSIGNEDLONGWORD range 0 2"i11-1;
subtype UNSIGNED12 in UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED13 is UNSIGNEDLONGWORD range 0 . 2"'13-1;
subtype UNSIGNED-14 tl UNSIGNEDLONGWORD range 0 2-'14-1;
subtype UNSIGNED_1S L UNSIGNEDLONGWORD range 0 2"*15-1;
subtype UNSIGNED.16 L UNSIGNEDLONGWORD range 0 2*-16-1;
subtype UNSIGNED_17 Lu UNSIGNED7LONGWORD range 0 . 2"*17-1;
subtype UNSIGNED_1S Lu UNSIGNEDLONGWORD enge 0 2-.18-1;
subtype UNSIGNED_19 Lu UNSIGNEDLONGWORD rang* 0 2"'19-1;
subtype UNSIGNED20 il UNSIGNE_ .ONGWORD range 0 2**20-1;
subtype UNSIGNED_21 L UNSIGNEL_ ONGWORD range 0 . 2"*21-1;
subtype UNSIGNED-22 Lu UNSIGNEDLONGWORD range 0 . 2"*22-1;
subtype UNSIGNED_23 Lu UNSIGNEDLONGWORD range 0 2-"23-1;
subtype UNSIGNED 24 iL UNSIGNED LONGWORD range 0 2"24-1;
subtype UNSIGNND%25 L UNSIGNEDLONGWORD range 0 2-'25-1;
subtype UNSIGNED.26 il UNSIGNED-LONGWORD range 0 .. 2"26-1;
subtype UNSIGNED27 is UNSIGNEDLONGWORD range 0 2*-27-1;
subtype UNSIGNED-28 il UNSIGNEDLONGWOPD range 0 .. 2"28-1;
subtype UNSIGNED_29 iL UNSIGNED LONGWORD range 0 2"'29-1;
subtype UNSIGNED-30 is UNSIGNEDLONGWORD range 0 2--30-1;
subtype UNSIGNED.31 iL UNSIGNEDLONGWORD ange 0 .. 2-31-1;

13-12 13.7a.4 Conventional Names for Unsigned Longwords

13.7.1 System-Dependent Named Numbers

In XD Ada, the values for system-dependent named numbers are as
shown in the following table.

Attribute MIL-STD-1750A
MININT -231

MAXINT 2 31-1

MAX-DIGITS 9
MAXMANTISSA 31
FINE-DELTA 2.0- 31

TICK 100.0 x 10- 6

13.7.2 Representation Attributes

The folowing information supplements all of this section:

For any object, program unit, label, or entry X:
X,ADDRESS Yields the address of the first of the storage ele-

ments allocated to X. For a subprogram, package,
task unit or label, this value refers to the machine
code associated with the corresponding body or
statement. For an entry for which an address
clause has been given, the value refers to the offset
of the interrupt vector from the vector base register.
The value of this attribute is of the type ADDRESS
defined in the package SYSTEM.

For an object that is a variable, the value is the ac-
tual address of the variable (which may be £tatically
or dynamically allocated). This attribute forces a
variable to be allocated in memory rather than in
a register, and causes the variable to be marked as
volatile for the duration of the block statement or
body containing use of the attribute. If the location
of the variable is not word-aligned, the value is
the address of the lowest word that contains the
variable. For an object that is a constant, the value
is the address of the constant x alue in memory;
however, two occurrences of C'ADDRESS, where

13.7.2 Representation Attributes 13-13

C denotes a constant, may or may not yield the
same address value. For an object that is a named
number, the value is zero (ADDRESSZERO).

NOTE

In the context of these representation
attributes, ADDRESS-ZERO means only
that no useful interpretation of a nonzero
value is currently supported. That is, its
use as a result of C'ADDRESS is subject
to change.

For an access object, X.alI'ADDRESS is the address
of the designated object; X.aIl'ADDRESS is subject
to an ACCESS-CHECK for the designated object.
For a record component, X.C'ADDRESS is subject
to a DISCRIMINANTCHECK for an object in
a variant part. For an array component or Mice,
X()'ADDRESS or X(I1... 12)'ADDRESS is subject to
an INDEXCHECK for the denoted component or
slice.

For program units that are task units or package
units, the value is zero (ADDRESS-ZERO). For
program units that are subprograms, the value is
the same as the address that would be exported.
(See Section 13.9a.1.4 (LRM) for information on
pragmas EXPORTFUNCTION and EXPORT-
PROCEDURE).

For entries, the value is zero (ADDRESSZERO).

For labels, the value is the address of the machine
code which follows the label.

For any type or subtype X, or for any object X:

X,SIZE For a type or a subtype, the value is limited to
val ies in the range 0 .. MAXINT; the exception
NU'MRIC.ERROR (seE Section 11.1) is raised for
values outside this range. For an object that is a
variable or a constant in XD Ada, the value is its
size in bits. For an object that is a named num-
ber, the value is zero. For a record component,
X.C, SIZE is subject to a DISCRIMINANTCHECK

13-14 Representation Attributes 13.7.2

for an object in a variant part. For an array compo-
nent or slice, X(I),SIZE or X(I1..12),SIZE is subject
to an INDEX-CHECK for the denoted component
or slice.

For any type or subtype X:

X,MACHINE-SIZE Yields the number of machine bits to be allo-
cated for variables of the type or subtype. This
value takes into account any padding bits used
by XD Ada when allocating a variable on a word
boundary. The value of this attribute is of the type
universal~integer.

The value is always a multiple of 16 (bits). In
particular, for discrete types it is 16, or 32. The
value is limited to the range 0..MAXINT; the
exception NUMERIC-ERROR is raisec, for values
outside this range.

For any object X:

X,BIT Yields the bit offset within the storage unit (word)
that contains the first bit of the storage allocated for
the object. The value of this attribute is of the type
universal~integer, and is always in the range 0..15

For an object that is a variable or a constant al-
located in a register, the value is zero. (The use
of this attribute does not force the allocation of
a variable to memory.) For an object that is a
formal parameter, this attribute applies either
to the matching actual parameter or to a copy
of the matching actual parameter. For an ac-
cess object, the value is zero (in the absence of
CONSTRAINT-ERROR); X.al,BIT is subject to
an ACCESS.CHECK for the designated object.
For a record component, X.CBIT i. ,ubject to
a DISCRIMINANT_CHECK for a coaiponent in
a variant part. For an array component or slice,
X(1),BIT or X(I1..I2),BIT is subject to an INDEX-
CHECK for the denoted component or slice.

13.7.2 Representation Attributes 13-15

The following information supplements the Notes section:

The attribute X oMACHINESIZE gives the size that would be used for
a variable of the type or subtype; it does not give the size that may be
used for a component of that type or subtype.

The machine size of a type or subtype can be influenced by representa-
tion clauses, unlike the size of a type or subtype, which is independent
of representation clauses. The machine size of a base type can be less
than, equal to, or greater than the size of that same base type. See the
XD Ada MIL-STD-1750A Run-Time Reference Manual for examples and
additional discussion.

13.7.3 Representation Attributes of Real Types

The following information supplements paragraphs 3 and 4:

For both fixed- and floating-point types:

T'MACHINE-ROUNDS In XD Ada this value is FALSE
T'MACHINEOVERFLOWS In XD Ada this value is FALSE

The XD Ada values of the other representation attributes for floating-
point types are dependent on the floating-point type and are listed in
Appendix F.

13.8 Machine Code Insertions

The following information supplements paragraph 4:
XD Ada provides the package MACHINE-CODE. Machine code inser-
tions can be expanded in line.

This predefined package and not a user-defined package must be
named in a with clause that applies to the compilation unit in which the
code statement occurs.

The following is an example of MACHINE-CODE and the with clause
in use:

13-16 Machine Code Insertions 13.8

with MACHINE-CODE;

procedure INC (N: in out INTEGER);

pragma CALL SEQUENCEPROCEDURE
INC,
MECHANISM -> (VALUE (R4)),
PRESERVED-REGISTERS -> (RO, Ri, R2, R3, R5, R6,

R7, R8, R9, R12, R13, R14));

procedure INC (Nt in out INTEGER) is

begin
AISPINST'(OPCODE -> AISP,

RA > R4,

N "> N1);

end INC;

XD Ada provides the pragma CALLSEQUENCE_PROCEDURE which
specifies parameter-passing mechanisms for machine code procedures.
The pragma is defined in Appendix B. Examples of machine code in-
sertion are given in Section 6.1 of the XD Ada MIL-STD-1750A Run-Time
Reference Manual. For the specification of the package MACHINE_
CODE, see Appendix D of the XD Ada MIL-STD-1750A Run-Time
Reference Manual.

13.9 Interface to Other Languages

The following information supplements paragraph 4:

As with VAX Ada, use of prasma INTERFACE in XD Ada is interpreted
as being equivalent to supplying the body of the named subprogram or
subprograms. Therefore, the following rules apply:

e. If a subprogram body is given later for a subprogram named with
pragma INTERFACE, the body is illegal.

* If pragma INTERFACE names a subprogram body, the pragma is
illegal.

* If a duplicate pragma INTERFACE is given, the latter pragma is
illegal.

In XD Ada, pragma INTERFACE applies to a renaming only if the
renaming occurs in the same declarative part or package specification
as the pragma. The renamed subprogram must also occur in that same
declarative part or package specification; renamed subprograms that
occur outside the declarative part or package specification are ignored
(without a warning diagnostic).

13.9 Interface to Other Languages 13-17

In addition, XD Ada interprets the effect of pragma INTERFACE in such
a way that it accepts and ignores implicit '"larations of subprograms
(such as predefined operators, derived s..-programs, attribute functions,
and so on).

Dependent upon its use in an XD Ada program, pragma INTERFACE is
interpreted in combination with one of two XD Ada import subprogram
pragmas: IMPORTFUNCTION or IMPORT_PROCEDURE. These
pragmas are described in Section 13.9a.1.

The language name is ignored, and so may be any identifier that
suggests the language, source, or nature of the imported subprogram.

If pragma INTERFACE is used without one of these import pragmas, a
default interpretation is used, as follows:
0 If the subprogram name applies to a single subprogram, then a

default import pragma is assumed as follows:

For a function, the default is as follows:

prana IMPORT-FUNCTION (function designator);

For a procedure, the default is as follows:

prague IMPORT-PROCEDURE (procedure-identifier);

If the subprogram name applies to two or more subprograms, the
pragma applies to all of them. However, a warning is given if the
appropriate XD Ada import pragmas are not given for all of the
subprograms.

Whether or not pragma INTERFACE is used with an import pragma, the
subprogram name must be an identifier, or a string literal that denotes
an operator symbol. In the following example, pragma INTERFACE
specifies that the indicated routines SQRT and EXP are to be imported
and used as bodies for the XD Ada functions SQRT and EXP in package
FORTLIB:

package FORTLIB Ls
function SQRT(X : FLOAT) return FLOAT;
function EXP(X : FLOAT) return FLOAT;

private
pragsa INTERFACE(FORTRAN, SQRT);
preaue, INTERFACE(FORTRAN, EXP);

end FORTLIB;

13-18 Interface to Other Languages 13.9

The following information supplements paragraph 5:

In XD Ada, the example package FORTLIB is interpreted as follows:
pragma INTERFACE specifies that the indicated routines SQRT and
PXI'are to be imported and used as bodies for the Ada functions SQRT
and EXP in package FORTLIB.

package CHOOSER iL
procedure P(X I INTEGER);
procedure P(X 2 FLOAT);

private
procedure R(X t FLOAT) renames P;
prag m INTERFACE(ASSEMBLER, R);

end CHOOSER;

In this example, pragma INTERFACE indicates that the body for the
second procedure P is to be imported as routine R.

The following information supplements the Notes section:

The meaning of the subprogram name ir ietermined as for any name
(see Section 8.3 (LRM)), except that the name can denote more than one
subprogram. Thus, in the following declaration the pragma INTERFACE
applies to the first two procedures; it does not apply to the third
because the declaration is not visible at the place of the pragma.

procedure P (B BOOLEAN);
procedure P (I: INTEGER);
pragne INTERFACE (ASSEMBLER, P);
procedure P (F: FLOAT);

This same interpretation is made for pragmas used to import and export
subprograms (see Section 13.9a.1).

If pragma INTERFACE and pragma INLINE are used together, the
pragma INLINE is ignored regardless of the order in which the two
pragmas appear.

Refer to Chapter 3 of the XD Ada MIL.STD-1750A Run-Time Reference
Manual for subprogram calling conventions and run-time organisation,
while Chapter 6 of the same manual describes low-level interfaces and
assembly language modules.

13.9 Interface to Other Languages 13-19

13.9a XD Ada Import and Export Pragmas

XD Ada provides import and export pragmas designed specifi-
cally for constructing programs composed of both Ada and non-
Ada entities. The import pragmas allow an Ada program to refer
to entities written in another language; the export pragmas make
Ada entities available to programs written in other languages.
The names of the pragmas indicate the kind of entity involved:
IMPORT-FUNCTION and EXPORT-FUNCTION apply to nongeneric
functions; IMPORT-PROCEDURE and EXPORT-PROCEDURE apply to
nongeneric procedures; IMPORTOBJECT and EXPORT-OBJECT apply
to objects; and IMPORT-EXCEPTION and EXPORT-EXCEPTION apply
to exceptions. These pragmas are described in this section, summarized
in Annex B, and listed in Appendix F,

All the XD Ada import and export pragmas have the following form:

pta,. import_export~pragma name
(internal_name (, external-designator)

I, pragmaspeificoptions]);

import exportpragma name tt-

EXPORT EXCEPTION EXPORTFUNCTION
EXPORT OBJECT j EXPORT PROCEDURE
IMPORT EXCEPTION I IMPORT FUNCTION

I IMPORT-OBJECT I IMPORT PROCEDURE
internal_ name it- (INTERNAL -> simple name

I (INTERNAL ->] operator symbol -- Can be used only for
-- IMPORTFUNCTION

externaldesignator :to (EXTERNAL =>] externalsymbol

external symbol s- identifier I string literal

The internal name can be an Ada simple name, or, if the declared entity
is a function, the internal name can be a string literal that denotes an
operator symbol. A subprogram to be imported or exported must be
identified by its internal name and parameter types; and, in the case of
a function, by the result .type (see Section 13.9a.1.1).

The external designator determines a symbol that is referenced or
declared in the linker object module. If an identifier is given, the
identifier is used. If a string literal is given, the value of the string is
used. The value of a string literal must be a symbol that is acceptable
to the XD Ada Builder; it need not be valid as an Ada identifier. (For
example, the dollar character ($) can be used.) If no external designator
is given, the internal name is used as the external designator. If the

13-20 XD Ada Import and Export Pragmas 13.9a

external designator (explicit or default) is longer than 12 characters, the

import or export pragma is ignored.

Pragma-specific options are described in the individual pragma sections
that follow.

The XD Ada import and export pragmas are only allowed at the place
of a declarative item, and must apply to an entity declared by an earlier
declarative item of the same declarative part or package specification.
At most one import or export pragma is allowed for any given entity in
the case of multiple overloaded subprograms, this rule applies to each
subprogram independently.

Additional placement and usage rules apply for particular pragmas as
described in the following sections.

Note:

Argument associations for XD Ada import and export pragmas can be
either positional or named. With positional association, the arguments
are interpreted in the order in which they appear in the syntax defini-
tion. The rules for the mixing of positional and named association are
the same as those that apply to subprograms (see Section 6.4 (LRM)).

A pragma for an entity declared in a package specification must not be
given in the package body. (A pragma for an entity given in the visible
part of a package specification can, however, be given in either the
visible or private part of the specification.)

No checking is provided to ensure that exported symbols do not con-
flict with each other or with other global symbols; such checking is
performed by the XD Ada Builder.

13.9a.1 Importing and Exporting Subprograms

XD Ada provides a series of pragmas that make it possible to call
nongeneric subprograms in a mixed-language programming environ-
ment. The IMPORT-FUNCTION and IMPORT.PROCEDURE pragmas
specify that the body of the subprogram associated with an Ada sub-
program specification is to be provided from assembly language.

ragma INTERFACE must precede one of these import pragmas (see
Section 13.9). The EXPORTFUNCTION and EXPORTPROCEDURE
pragmas allow an Ada procedure or function to be called from assem-

ly language. The pragmas support parameter passing by means of
registers.

Importing and Exporting Subprograms 13.9a.1 13-21

13.9s.1.1 Importing Subprograms

XD Ada provides two pragmas for importing subprograms:
IMPORTFUNCTION and IMPORT-PROCEDURE. These pragmas
allow the import of the kind of subprograms indicaied.

The pragmas for importing subprograms have the following form:

praque IMPORT FUNCTION I IMPORT-PROCEDURE

([INTERNAL ->I internal.name
(, EXTERNAL ->] externaldesignator I
(, PARAMETER-TYPES ->] (parameter-types
[, RESULT TYPE ->] type mark] -- FUNCTION only
(, MECHANISM ->] mechanism I
, RESULT MECHANISM ->) mechanism spec I -- FUNCTION only
(, FIRST.OPTIONALPARAMETER ->) FORMAL-NAME]
(PRESERVED REGISTERS ->] (registers) I

parameter types s:t
mull I typemark {, typemark}

mechanism si-
mechanism spec I (mechanism-spec (, mechanlsm-spec)

mechanism.spec st
mechanism-name [((REGISTER > I register name)

mechanismname it-
VALUE I
REFERENCE SITREFERENCE
DOPE-VECTOR SITDOPEVECTOR

registers :t-
null I registername {, registername }

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The external designator denotes an XD Ada Builder global symbol that
is associated with the external subprogram. If no external designator is
given, the internal name is used as the global symbol.

13-22 Importing Subprograms 13.9a.1.1

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram's
declaration. The absence of parameters must be indicated by the
reserved word null.

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or
by descriptor). The calling program (namely the XD Ada program)
is responsible for ensuring that parameters are passed in the form
required by the external routine.

Mechanism names are described as follows. Within these definitions,
the term bit string means any one-dimensional array of a discrete type
whose components occupy successive single bits. The term simple
record type means a record type that does not have a variant part and in
which any constraint for each component and subcomponent is static.
A simple record subtype is a simple record type or a static constrained
subtype of a record type (with discriminants) in which any constraint for
each component and subcomponent of the record type is static.
VALUE Specifies that the immediate value of the actual

parameter is passed. Values of scalars, access
types, address types and private types whose
fl type is either a scalar, an access type or an
address type can be passed by VALUE. If the
value is a private type, the pragma must occur
after the full declaration of the private type. Bit
strings can also be passed by VALUE.

REFERENCE Specifies that the address of the value of the
actual parameter is passed. This mechanism can
be used for parameters of any type.

DOPE-VECTOR Specifies that the address of the DOPE.ECTOR
is passed, a 32-bit pointer to an object, taking
the form described in Section 2.1.4 of the XD
Ada MIL-STD-1750A Run-Time Reference Manual.

BITLDOPEYVECTOR Specifies that the address of the BITDOPE_
VECTOR is passed, a 32-bit pointer to an object,
taking the form described in Section 2.1.4 of
the XD Ada MIL-STD-1750A Run-Time Reference
Manual.

13.9a.1.1 Importing Subprograms 13-23

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the result.

The preserved registers option gives a list of hardware registers which
are not altered by the procedure or function. If this option is omitted it
implies that no registers are preserved.

In addition to the rules given in Section 13.9a, the rules for importing
subprograms are as follows:

* If an import pragma is given for a subprogram specification, pragma
INTERFACE (see Section 13.9) must also be given for the subpro-
gram earlier in the same declarative part or package specification.
The use of pragma INTERFACE implies that a corresponding body
is not given.

* If a subprogram has been declared as a compilation unit, the
pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

" These pragmas can be used for subprograms declared with a re-
naming declaration. The internal name must be a simple name, and
the renaming declaration must occur in the same declarative part
or package specification as the pragma. The renamed subprogram
must also occur in that same declarative part or package spedfica-
tion. Renamed subprograms that occur outside the declarative part
or package specification are ignored (without a warning diagnostic).

* None of these pragmas can be used for a generic subprogram or
a generic subprogram instantiation. In particular, they cannot be
used for a subprogram that is declared by a generic instantiation of
a predefined subprogram (such as UNCHECKEDCONVERSION).

13-24 Importing Subprograms 13.9a.1 .1

Examples:

In this example, the pragma INTERFACE identifies SQRT as an external
subprogram; the language name argument ASSEMBLER has no effect.
The pragma IMPORTFUNCTION uses positional notation to specify
arguments for importing the declared function SQRT. The pragma form
indicates that the internal name is SQRT, and the external designator is
"MTH$SQRT'. The parameter is of type FLOAT, and is passed in R4;
the result is of type FLOAT, and it is returned in R6.

functlon SQRT (X i FLOAT) return FLOAT;
progue INTERFACE (ASSEMDLER, SQRT);
pragla IMPORTFUNCTION

(SQRT, *MTH$SQRT", (FLOAT),
FLOAT, (VALUE(R4)), VALUE(R6)

The next example shows an alternative way of importing the declared
function SQRT using named notation. In this case, the parameter is
passed in R7, and the result is returned in R4; the registers which are
preserved by the called function are also specified.

fuatLo SQRT (X i LONG..FLOAT) return LONG-FLOAT;
prgque INTERFACE (ASSEMBLER, SORT);
prague IMPORT-FUNCTION (INTERNAL -> SORT,

PARAMETER TYPES -> (LONGFLOAT),
RESULTTYPE -> LONG-FLOAT,
MECHANISM w> (VALUE(R7)),

RESULT MECHANISM a> VALUE(R4),
EXTERNAL a> *MTHSDSQRT",
PRESERVED REGISTERS ->

(RO, R1, R2, R3, R12, R13, R14));

If the previous example is combined with the code in the first example
(that is, with only one occurrence of pragma INTERFACE), the result is
an overloading of SQRT:

13.9a.1.1 Importing Subprograms 13-25

function SQRT (X i LONGFLOAT) return LONG FLOAT;
function SQRT (X i FLOAT) return FLOAT;

preqa INTERFACE (ASSEMBLER, SQRT);
pragna IMPORT-FUNCTION (SQRT,

"MTH$SQRT",
(FLOAT),
FLOAT,
(VALUE(R4)),
VALUE (R6));

pragma IMPORT-FUNCTION (INTERNAL -> SQRT,
PARAMETER TYPES > (LONGFLOAT),
RESULT TYPE > LONG FLOAT,
MECHANISM -> (VALUE(R7)),
RESULT MECHANISM => VALUE(R4),
EXTERNAL w> "MTH$DSQRT",
PRESERVED REGISTERS a>

(RO, Ri, R2, R3, R12, -13, R14))l

The next example shows the use of renaming with an imported pro-
cedure (it is assumed that these declarations occur in a declarative
part or package specification). Note that the renaming causes the im-
ported ASSEMBLER procedure to be used in calls to both procedures
CHANGE and EXCHANGE. Also note that because no external desig-
nator is specified, the builder global symbol associated with the external
subprogram is EXCHANGE, and because no parameter mecha'nisms
are specified, the compiler's defaults will apply in calls to CHANGE or
EXCHANGE.

procedure CHANGE (X,Y : INTEGER);
procedure EXCHANGE (X,Y : INTEGER) reame. CHANGE;
pragu INTERFACE (ASSEMBLER, EXCHANGE);
prague IMPORT-PROCEDURE (INTERNAL -> EXCHANGE,

PARAMETERTYPES -> (INTEGER, INTEGER))l

13.9a.1.2 Exporting Subprograms
XD Ada provides two pragmas for exporting subprograms:
EXPORTFUNCTION and EXPORT_PROCEDURE. Both export prag-
mas establish an external name for a subprogram and make the name
available to the XD Ada Builder as a global symbol, so that the subpro-
gram can be called by in assembly language module.

The EXPORTFUNCTION and EXPORT-PROCEDURE pragmas allow
the export of the kind of subprograms indicated.

13-26 Exporting Subprograms 13.9a.1.2

The pragmas for exporting subprograms have the following form:

pragus EXPORTFUNCTION I EXPORT-PROCEDURE

(INTERNAL ->] internal name
(I [EXTERNAL ->1 external designator I
C, (PARAMETER.TYPES =>} (parametertypes) I

(, (RESULT TYPE ->) type mark -- FUNCTION only
[, [MECHANISM ->) mechanism)

(, (RESULT-MECHANISM ->] mechanism spec J -- FUNCTION only

parametertypes ::-
null I type mark {, type mark}

mechanism it-
mechanismspec I (mechanism spec {, mechanism spec)

mechanism spec : t-
mechanism name [([REGISTER ->] register name

mechanism name it-
VALUU I
REFERENCE I IT-REFERENCE
DOPE-VECTOR BITDOPE VECTOR

registers :t-
mull I register name {, registername }

parameter-types : : -
null I typemark (, typemark}

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The external designator denotes an XD Ada Builder global symbol
that is associated with the external subprogram. If no external name is
given, the internal name is used as the global symbol.

The parameter types option specifies a series of one or more type
marks (t or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram's
declaration. The absence of parameters must be indicated by the
reserved word null.

13.93.1.2 Exporting Subprograms 13-27

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or
by descriptor). The calling program (namely the XD Ada program)
is responsible for ensuring that parameters are passed in the form
required by the external routine. Mechanism options and possible
values for mechanism names and class names are described in Section
13.9a.1.1.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the result.

In addition to the rules given in Section 13.9a, the rules for exporting
subprograms are as follows:

An exported subprogram must be a library unit or be declared in
the outermost declarative part of a library package. Thus, pragmas
for exporting subprograms are allowed only in the following cases:
- For a subprogram specification or a subprogram body that is a

library unit
- For a subprogram specification that is declared in the outermost

declarations of a package specification or a package body that is
a library unit

- For a subprogram body that is declared in the outermost decla-
rations of a package body that is a library unit

Consequently, an export pragma for a subprogram body is allowed
only if either the body does not have a corresponding specification,
or the specification and body occur in the same declarative part.

This set of rules implies that an EXPORT_FUNCTION or
EXPORTPROCEDURE pragma cannot be given for a generic li-
brary subprogram, nor can one be given for a subprogram declared
in a generic library package. However, either of these pragmas
can be given for a subprogram resulting from the instantiation of

13-28 Exporting Subprograms 13.9a.1.2

a generic subprogram, provided that the instantiation otherwise
satisfies this set of rules.

* In the case of a subprogram declared as a compilation unit, the
pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

0 Neither of these pragmas can be used for a subprogram that is
declared with a renaming declaration.

* Neither of these pragmas can be used for a subprogram that is
declared by a generic instantiation of a built-in library subprogram
(such as UNCHECKED-CONVERSION).

Examples:

The following example shows an export pragma that causes the Ada
procedure PROC to be exported for use in an assembly language
module. The name PROC is declared as an XD Ada Builder global
symbol.

procedure PROC (Y : INTEGER);
prag" EXPORT_PROCEDURE (PROC);

The next example shows an Ada function being called from an assembly
language module:

functLon MULTIPLY (Y : in INTEGER) return INTEGER L
begin

return, Y * 10;
end;
pregue EXPORT-FUNCTION (INTERNAL -> MULTIPLY,

PARAMETER TYPES -> (INTEGER),
RESULTTYPE -> INTEGER);

progue CALL SEQUENCEFUNCTION (
UNIT -> MULTIPLY,
PARAMETER-TYPES -> (INTEGER),
MECHANISM -> (VALUE(DO)),
RESULT-MECHANISM -> VALUE(DO));

TITLE "1750A Calling Ada"
MODULE "CALL ADA"

XDEF CALL ADA
XREF MULTIPLY

DSEG

At BLKW 1

PSEG

CALLADA

13.9a.1.2 Exporting Subprograms 13-29

I entry sequence
L R4,A ! in parameter
JS R10,MULTIPLY ! call
ST R4,A out parameter

I return from subroutine

13.9a.2 Importing and Exporting Objects

XD Ada provides two pragmas for importing and exporting objects:
IMPORT.OBJECT and EXPORTOBJECT. The IMPORTOBJECT
pragma references storage declared in an assembly language module.
1,, t EXPORT-OBJECT pragma allows an assembly language module to
refer to the storage allocated for an Ada object.

In addition to the rules given in Section 13.9a, the rules for importing
and exporting objects are as follows:

The object to be imported or exported must be a variable declared
by an object declaration at the outermost level of a library package
specification or body.

* The subtype indication of an object to be imported or exported must
denote one of the following:
- A scalar type or subtype.
- An array subtype with static index constraints whose component

size is static.
- A record type or subtype that does not have a variant part and

in which any constraint for each component and subcomponent
is static (a simple record type or subtype).

* Import and export pragmas are not allowed for objects declared
with a renaming declaration.
Import and export pragmas for objects are not allowed in a generic
unit.

Notes:

Objects of private or limited private types cannot be imported or
exported outside the package that declares the (limited) private type.
They can be imported or exported inside the body of the package where
the type is declared (that is, where the full type is known).

The XD Ada pragmas for importing or exporting objects can precede or
follow a pragma VOLATILE for the same objects (see Section 9.11).

13-30 13.9a.2 Importing and Exporting Objects

Address clauses are not allowed in combination with any of the XD Ada
pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored (see Section 13.5).

13.9a.2.1 Importing Objects

The XD Ada IMPORT-OBJECT pragma specifies that the storage allo.
cated for the object (when the assembly language module is compiled)
be made known to the calling Ada program by an externally-defined XD
Ada Builder global symbol.

Pragma IMPORT-OBJECT has the following form:

preaga IF ORTOBJECT
(internalname [, external designator))

The internal name is the object identifier. The external designator
denotes an XD Ada Builder global symbol that is associaied with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Because it is not created by an Ada elaboration, an imported object
cannot have an initial value. Specifically, this restriction means that the
object to be imported:

* Cannot be a constant (have an explicit initial value).
" Cannot be an access type (which has a default initial value of null).
" Cannot be a record type that has discriminants (which are always

initialized) or components with default initial expressions.
" Cannot be an object of a task type.

Example:

PIDt INTEGER;
pragu IMPORT-OBJECT (PID, "PROCESS$ID");

In this example, the variable PID refers to the externally-defined symbol
PROCESS$ID.

Alternatively, this example can be written in named notation as follows:

PID i INTEGER;
praequ IMPORT-OBJECT (INTERNAL *> PID,

EXTERNAL "> "PROCESS$ID);

13.9a.2.1 Importing Objects 13-31

13.9sa.2.2 Exporting Objects
The XD Ada pragma EXPORT-OBJECT specifies that the storage al-
located for the object (when the Ada program is compiled) be made
known to assembly language modules by an XD Ada Builder global
symbol.

Pragma EXPORTOBJECT has the following form:

prq ga EXPORT OBJECT
(internal name (, externaldesignator])

The internal name is the object identifier. The external designator
denotes an XD Ada Builder global symbol that is associated with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Example:

PIDs INTEGER;
praqua EXPORT-OBJECT (PID, "PROCESS$ID");

Alternatively, this example can be written in named notation:

PID: INTEGERt
prague EXPORT-OBJECT (INTERNAL -> PID,

EXTERNAL -> "PROCESS$ID");

13.9a.3 Importing and Exporting Exceptions

XD Ada provides the IMPORTEXCEPTION and EXPORTEXCEPTION
pa for importing and exporting exceptions. The pragma IMPORT-
E ON allows non-Ada exceptions to be used in Ada programs;
the pragma EXPORT-EXCEPTION allows Ada exceptions to be used by
foreign units.

The rules for importing and exporting exceptions are given in Section
13.9a.

Note:

A pragma for an exception that is declared in a package specification is
not allowed in the package body.

13-32 Importing and Exporting Exceptions 13.9a.3

13.9a.3.1 Importing Exceptions
The XD Ada IMPORT-EXCEPTION pragma is provided for compatibil-
ity with VAX Ada. This pragma specifies that the exception associated
with an exception declaration in an Ada program be defined externally
in non-Ada code.

In XD Ada pragma IMPORTEXCEPTION has the following form:

praqua IMPORTEXCEPTION
(internalname [, external-designator)

[, [FORM >) ADA 1);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception. If no external name is
given, the internal name is used as the global symbol.

For compatibility with VAX Ada, the form option indicates that an Ada
exception is being imported. If omitted, this defaults to ADA.

The external designator refers to an address that identifies the excep-
tion.

The VAX Ada version of this pragma supports an alternative form
(VMS), and a code option in addition to the XD Ada arguments. If
either of these unsupported arguments is specified, the compiler ignores
the pragma and issues a warning message.

13.9s.3.2 Exporting Exceptions
The XD Ada EXPORTEXCEPTION pragma allows Ada exceptions to
be visible outside the XD Ada program, so that they can be raised and
handled by programs written in XD Ada MIL-STD-1750A assembly
language. This pragma establishes an external name for an Ada excep-
tion and makes the name available to the XD Ada Builder as a global
symbol. Refer to the XD Ada MIL-STD-1750A Run-Time Reference Manual
for further information on exporting exceptions.

Pragma EXPORT_EXCEPTION has the following form:

pragua EXPORTEXCEPTION
(internal name [, external designatorl

[, [FORM w>] ADA]);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception.

Exporting Exceptions 13.9a.3.2 13-33

The form option specifies that an Ada exception is being exported.

Example:
UNDERFLOW : *xcepttou
pregam EXPORT-EXCEPTION (UNDERFLOW, MTH UNDERFLOW, ADA);

In this example, an Ada exception is exported as a global symbol.

13.10 Unchecked Programming

13.10.1 Unchecked Storage Deallocation

The following information supple-ments the Notes section:

Because UNCHECKEDDEALLOCATION is a redefined generic pro-
cedure, XD Ada does not allow the use of the IMPORTPROCEDURE
pragma to substitute an alternative procedure body.

13.10.2 Unchecked Type Conversions

The following information supplements paragraph 2:

XD Ada supports the generic function UNCHECKEDCONVERSION
with the following restrictions on the class of types involved:

* The actual subtype corresponding to the formal type TARGET must
not be an unconstrained array type.

* The actual subtype corresponding to the formal type TARGET must
not be an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value
resulting from a call of the conversion function resulting from an instan-
tiation of UNCHECKED-CONVERSION is checked to ensure that the
discriminants satisfy the constraints of the actual subtype.

The effect with XD Ada is as if the source value is copied one word
in ascending order of address, into the destination, also in ascending
order of address. If the destination has fewer words than the source
value, the high order words of the source value are ignored (truncated).
If the source value has fewer words than the destination, the high order
words of the destination are set to zero.

13-34 Unc, -ked Type Conversions 13.10.2

Chapter 13

Representation Clauses and
Implementation-Dependent

Features

This chapter describes XD Ada MIL-STD-1750A Version 1.2 interrupt
handling. In particular, it describes the handling of direct interrupt
entries, and use of pragma DIRECT_INTERRUPTENTRY.

13.5.1 Interrupts

The following Information supplements all of this section:

Unlike VAX Ada, XD Ada supports intef'upts. The address in the use
clause is the MIL-STD.1750A interrupt number.

In addition to support for normal Ada interrupt entries, XD Ada
provides the additional pragmas LEVEL and DIRECTNTERRUPT_
ENTRY. Pragma LEVEL is given for a task type, or single task of anony-
mous type, and gives the level for its interrupts. Pragma DIRECT-
INTERRUPTENTRY is used to connect an interrupt entry directly to the
required interrupt vector, and is described below.

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MIL-STD-
1750A Run-Time Reference Manual gives examples of interrupt handlers.

13.5.1 Interrupts 13-1

Tasks with interrupt entries but no pragma LEVEL run at interrupt level
0 only while accepting an interrupt in a rendezvous. Other interrupts of
the same level are inhibited while in the handler. When not accepting
an interrupt, the task runs with all interrupts enabled. It is, however,
possible to lose interrupts with this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the pragma LEVEL behaves like an
ordinary entry call. An interrupt entry to a task with no pragma LEVEL
behaves like a conditional entry call. If there is an accept statement
waiting for the interrupt, the body of the accept statement is executed
immediately. When the body is complete, the task is inserted in the
ready queue and the interrupt completed by a return-from-interrupt
instruction. The accept statement can call subprograms and make entry
calls, but must not suspend the task before the interrupt is dismissed,
otherwise the program repeatedly services the interrupt unsuccessfully.

Writing interrupt handlers in XD Ada requires detailed knowledge of
the behavior of the target computer's interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

Normal Ada interrupt entries cause a tasking reschedule each time an
interrupt occurs. This inevitably incurs a performance overhead, and
may mean that interrupts are not serviced quickly enough. In order to
avoid this problem, XD Ada supplies pragma DIRECTINTERRUPT_
ENTRY, which causes the interrupt entry to be connected directly to
the required interrupt vector. This run-time efficiency greatly improves
response times. The form of this pragma is as follows:

prague DIRECTINTERRUPTENTRY(interrupt_entry)J

Pragma DIRECT_INTERRUPT_ENTRY may be used where the pro-
gram adheres to one of two supported code models. In fact, most
applications will naturally adhere to one or other of the models, so
the practical restrictions from this requirement are minimal. The use
of pragm DIRECT.INTERRUPTENTRY must meet certain semantic
conditions. These, along with the checks carried out by the compiler
and run-time system, are described in full in the XD Ada MIL.STD-1750A
Run-Time Reference Manual part of this manual.

Note that it is essential that the lowest level direct interrupt (or interrupt
procedure) is always higher than the highest level normal interrupt, in
order that the direct interrupt context is not left as a result of interruptive
preemption.

13-2 Interrupts 13.5.1

The models and the related conditions are described in full, and ex-
amples of the models in use are given, in the XD Ada MIL-STD.1750A
Run-Time Reference Manual part of this manual.

Interrupt procedures and Package INTERRUPTSUPPORT are also
described in the XD Ada MIL-STD-1750A Run-Time Reference Manual part
of this manual.

13.5.1 Interrupts 13-3

Annex B

Predefined Language Pragmas

In addition to the standard predefined pragmas, described in Annex B
of the Reference Manual for the Ada Programming Language, XD Ada sup-
ports pragmas CALLSEQUENCEFUNCTION, CALLSEQUENCE_
PROCEDURE, LINK-OPTION, and TITLE, which are defined here.
This annex also summarizes the definitions given elsewhere of the
remaining implementation-defined pragmas.

Definitions

CALLSEQUENCEFUNCTION
CALL.SEQUENCEPROCEDURE
The pragma CALL-SEQUENCEPROCEDURE is used for describing
machine code insertions or exported subprograms. It specifies how
parameters are mapped onto rcgisters, and which registers must be
preserved, for machine code insertions (see Section 13.8). The pragma
CALLSEQUENCEFUNCTION is also provided. These pragmas have
the form:

preaqa CALLSEQUENCEFUNCTION

((UNIT ->] internal name
(, [RESULT-TYPE ->] typemark I

(, (PARAMETERTYPES ->I (parametertypes
((MECHANISM *>] mechanism I
(, [RESULT-MECHANISM ->] mechanism spec

((PRESERVED_REGISTERS -> (registers

pragua CALLSEQUENCE PROCEDURE

([(UNIT ->] internal-name
([PARAMETER-TYPES ->] (parametertypes
, (MECHANISM ->i mechanism I
(, (PRESERVED REGISTERS -> j (registers

Predefined Language Pragmas B-1

parameter types :t-
null I type mark (, typemark)

mechanism t:-
mechanism-spec I (mechalaism-spec (, mechanism spec)

mechanism spec :t=

mechanism name ((EREGISTER -> I register name

mechanism name ::-
VALUE
REFERENCE SIT REFERENCE
DOPEVECTOR I BITDOPEVECTOR

registers :t-
mull I register name (, rogistername

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram's
declaration. The absence of parameters must be indicated by the
reserved word null.

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option spenifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or
by descriptor). The calling program (namely the XD Ada program)
is responsible for ensuring that parameters are passed in the form
required by the external routine.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

0-2 Predeflned Language Pragmas

The result mechanism option is 'used only for functions; it specifies the

parameter-passing .mechanism for passing the result type.

Mechanism names are described in Section 13.9a.1.1.

The preserved registers option gives a list of hardware renisters which
are not altered by the procedure or function. If this option is omitted it
implies that no registers are preserved; in this case the effect is one of
the following:

* If the body of the subprogram is written in Ada, the compiler
calculates which registers are preserved

* If the body of the subprogram is a machine code insertion, the
pragma has the same effect as pragma IMPORT-PROCEDURE

LINK.OPTION
This pragma is used to associate link option file names with a program.
Link option files are used to specify the target and mapping definitions
to be used when building the program. In this way, they do not have
to be explicitly defined on the XDACS LINK command line. The
appropriate external target and mapping definitions (in the form of link
option files) are entered into the program library by use of the XDACS
command COPY UNK.OPTION/FOREIGN, as described in Developing
XD Ada Programs o ' MS Systems for the MIL-STD-1750A. If a suitable
link option file exists in another program library, it can be copied to
the current program library with the XDACS command COPY LINK.
OPTION. The advantage of using link option files is that the program
definition is separate from the program itself, and so can be altered
without making the last compile obsolete. The LINKOPTION pragma
therefore removes the need to recompile the whole program. More
detail on this topic can be found in Sections 7.9 and 8.10 of Developing
XD Ada Programs on VMS Systems for the MIL-STD.1750A.

Pragma LINK.OPTION has the form:

prepu LINKOPTION (link-option-fil.-name
[,link-option-fille-nameJ);

link-option-file-name s-
[TARGET->) target-option

I MAPPING->] mapping-option

This pragma is only allowed in the outermost declarative part of a
subprogram that is a library unit; at most one such pragma is allowed

Predefined Language Pragmas S-3

in a subprogram. If it occurs in a subprogram other than the main
program, this pragma has no effect (see Sections 9.8 and 9.9 (LRM)).

TITLE

Takes a title or a subtitle string, or both, in either order, as arguments.
Pragma TITLE has the form:

pragua TITLE (titling-option
[,titling-option));

titling-option t=
[TITLE ->] stringliteral
[SUBTITLE ->) stringliteral

This pragma is allowed anywhere a pragma is allowed; the given strings
supersede the default title or subtitle portions of a compilation listing.

Summary

Pragma Meaning
EXPORT-EXCEPTION Takes an internal name denoting an

exception, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and a form
(ADA) as arguments. This pragra is
only allowed at the lace of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or pack-
age specification. The pragma permits
an Ada exception to be handled by
programs written in XD Ada MIL-STD-
1750A assembly language (see Section
13.9a.3.2).

EXPORTFUNCTION Takes an internal name denoting a
function, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), parameter
types, and result type as arguments.
This pragma is only allowed at the place
of a declarative item, and must apply
to a function declared by an earlier
declarative item of the same declara-
tive part or package specification. In

F-4 Predefined Language Pragmas

the case of a function declared as a
compilation unit, the pragma is only
allowed after the function declaration
and before any subsequent compilation
unit. This pragma is not allowed for a
function declared with a renaming dec-
laration, and is not allowed for a generic
function (it can be given for a generic
instantiation). This pragma permits an
Ada function to be called from a pro-
gram written in assembly language (see
Section 13.9a.1.2).

EXPORT-OBJECT Takes an internal name denoting an
object, and optionally takes an exter-
nal designator (the name of an XD Ada
Builder global symbol), and size des-
ignator as arguments. This pragma is
only allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared by an earlier
declarative item of the same package
specification or body; the variable must
be of a type or subtype that has a con-
stant size at compile time. This pragma
is not allowed for objects declared with a
renaming declaration, and is not allowed
in a generic unit. This pragma permits
an Ada object to be referred to by a
routine written in assembly language (see
Section 13.9a.2.2).

EXPORT-PROCEDURE Takes an internal name denoting a pro-
cedure, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), and parameter
typoes as arguments. This pragma is only
allowed at the place of a declarative item,
and must apply to a procedure declared
by an earlier declarative item of the same
declarative part or package specification.
In the case of a procedure declared as
a compilation unit, the pragma is only
allowed after the procedure declaration
and before any subsequent compilation

Predefined Language Pragmas B-5

unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called from
a program written in assembly language
(see Secticn I.9a.1.2).

IMPORTEXCEPTION Takes an internal narie denotLig an
exception, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and a form
(ADA) as arguments. This pragma is
only allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declArative item
of the same declarative part or package
specification. The pragma is included for
compatibility with VAX Ada (see Section
13.9a.3.1).

IMPORTFUNCTION Takes an internal name denoting a func-
tion, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), parameter types,
and result type as arguments. Pragma
INTERFACE Tritst be used with this
pragma (see Se, .don 13.9). This pragma
is only allowed at the place of a declar-
ative item, and must apply to a function
declared by an earlier declarative item
of the same declarative Fart -r package
specification. In the ca. , Ytnc-
tion declared as a compilation unit, the
pragma is only allowed after the bfnction
declaration and before any subsequent
compilation unit. This pragma is allowea
for a function declared with a renaming
declaration; it is not allowed for a generic
function or a generic function instantia-
tion. This pragma permits an assembly
language routine to be used as an Ada
function (see Section 13.9a.1.1).

B-6 Predefined Language Pragmas

IMPORT-OBJECT Takes an internal name denoting ain
object, and optionally takes an ex, ernal
designator (the name of an XD Ada
Builder global symbol), as arguments.
This pragma is only allowed at the place
of a declarative item at the outermost
level of a library package specification
or body, and must apply to a variable
declared by an earlier declarative item of
the same package specification or body;
th.. variable must be of a type or subtype
that has a constant size at compile time.
This pragma is not allowed for objects
deciared with a renaming declaration,
and is not allowed in a Seneric unit. This
pragma permits storage declared in an
assembly language routine to be referred
to by an Ada program (see Section
13.9a.2.1).

IMPORT-PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and pa-
rameter types as arguments. Pragma
INTERFACE must be used with this
pragma (see Section 13.9). This pragma
is only allowed at the place of a declara-
tive item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or pack-
age specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure de-
clared with a renaming declaration; it is
not allowed for a generic procedure or
a generic procedure instantiation. This
pragma permits an assembly language
routine to be used as an Ada procedure
(see Section 13.9a.1.1).

PredefinGd Language Pragmas 8-7

INTERFACE In XD Ada, pragma INTERFACE is
required in combination with pragmas
IMPORTFUNCTION and IMPORT-
PROCEDURE (see Section 13.9a.1).

LEVEL This pragma identifies a task or task type
as running at interrupt level. Pragma
LEVEL has one argument specifying
the level for its interrupts (see Section
13.5.1).

STORAGE-UNIT In XD Ada, the only argument allowed
for this pragma is 16.

SUPPRESS.ALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that all run-
time checks in the unit are suppressed
(see Section 11.7).

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must both
occur (in this order) immediately within
the same declarative part or package
specification. The pragma must appear
before any occurrence of the name of
the variable other than in an address
clause or in one of the XD Ada pragmas
IMPORT.OBJECT or EXPORTOBJECT.
The variable cannot be declared by a
renaming declaration. The VOLATILE
pragma specifies that the variable may be
modified asynchronously. This pragma
instructs the compiler to obtain the value
of a variable from memory each time it
is used (see Section 9.11).

B-P, Predefined Language Pragmas

Annex B

Predefined Language Pragmas

This chape uplies details of three pragmas Introduced by XD Ada
MIL-STD-1l750A Version 1.2, pragina DIRECTINTERRUPT_.ENTRY,
pragma IDENT an= ragma TME..SLICE. XD Ada pragmas in ad-
dition to those dfed in Annex B of the Reference Manual for the
Adafrogramming Langua e(CALL..SEQUENCE..FUNCTION, CALL-.
SEQUENCE-PROCEDURE, LEVEL, LINK-OPTION and TITLE) are
described in the XD Ada MIL-STD)-1750A Supplement to the Ada Language
Reference Manual for Version 1.0.

Definition@
IDENT

Takes a string literal of 31 or fewer characters as the single argument.
The pragma IDENT has the following form:

prague IDENT (string-literal);

This pragma is allowed only in the outermost declarative part of a
compilation unit. The giver. string is used to identify the object module
associated with the compilation unit in which the pragma IDENT occurs.

Summary
Pragma Meaning
DIRECTINTERRUPLENTRY Takes the simple name of an interrupt

entry, which must have no parameters,
as the single argument. This pragma
signals to the compiler that the interrupt

Predeflned Language Pragmas 8-1

entry is to be directly connected to the
hardware interrupt (see Section 13.5.1).

TIME_.SUCE Takes a static expression of the prede-
fined fixed point type DURATION (in
Package STANDARD) as the single ar-
gument. This pragma is only allowed
in the outermost declarative part of a
library subprogram, and at most one
such pragma is allowed in a library sub-
program. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
specifies the nominal amount of elapsed
time permitted for the execution of a task
when other tasks of the same priority are
also eligible for execution. A positive,
nonzero value of the static expression
enables scheduling for all tasks in the
subprogram; a negative or zero value
disables it (see Section 9.8a).

8-2 Predefined Language Pragmas

